Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol f...Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.展开更多
In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidon...In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.展开更多
In this paper analysis of constant-intensity approximation of nonlinear interaction of the second-harmonic generation in ZnO/PMMA nanocomposite films for different concentrations of ZnO was carried out with regard to ...In this paper analysis of constant-intensity approximation of nonlinear interaction of the second-harmonic generation in ZnO/PMMA nanocomposite films for different concentrations of ZnO was carried out with regard to the losses and phase changes of all the interacting waves. The investigated samples were manufactured on the basis of ZnO nanoparticles embedded into polyvinylchloride polymeric matrix (PMMA) by the method of electrochemical deposition. The main goal of work is the exploration of the ZnO morphology and parameters of the second order susceptibilities. It is verified that the surface effects in ZnO/PMMA structures will give a larger contribution than the volume effects. The factors restricting the efficiency of the process of frequency conversion have been analyzed.展开更多
Introduction The falsification of industrial consumer goods and the emergence of counterfeit productions are important dangerous economic problems of brand manufacturers in many developed countries.The methods of fals...Introduction The falsification of industrial consumer goods and the emergence of counterfeit productions are important dangerous economic problems of brand manufacturers in many developed countries.The methods of falsification of counterfeit goods and production of various kinds of counterfeit are based on the substitution of true goods for not展开更多
Biomaterial research has been going on for several years,and many companies are heavily investing in new product development.However,it is a contentious field of science.Biomaterial science is a field that combines ma...Biomaterial research has been going on for several years,and many companies are heavily investing in new product development.However,it is a contentious field of science.Biomaterial science is a field that combines materials science and medicine.The replacement or restoration of damaged tissues or organs enhances the patient’s quality of life.The deciding aspect is whether or not the body will accept a biomaterial.A biomaterial used for an implant must possess certain qualities to survive a long time.When a biomaterial is used for an implant,it must have specific properties to be long-lasting.A variety of materials are used in biomedical applications.They are widely used today and can be used individually or in combination.This review will aid researchers in the selection and assessment of biomaterials.Before using a biomaterial,its mechanical and physical properties should be considered.Recent biomaterials have a structure that closely resembles that of tissue.Antiinfective biomaterials and surfaces are being developed using advanced antifouling,bactericidal,and antibiofilm technologies.This review tries to cover critical features of biomaterials needed for tissue engineering,such as bioactivity,self-assembly,structural hierarchy,applications,heart valves,skin repair,bio-design,essential ideas in biomaterials,bioactive biomaterials,bioresorbable biomaterials,biomaterials in medical practice,biomedical function for design,biomaterial properties such as biocompatibility,heat response,non-toxicity,mechanical properties,physical properties,wear,and corrosion,as well as biomaterial properties such surfaces that are antibacterial,nanostructured materials,and biofilm disrupting compounds,are all being investigated.It is technically possible to stop the spread of implant infection.展开更多
The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqu...The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqueous solutions (of 0.5%, 1%, 2%, 5% and 10% concentrations). The mechanical properties of sodium silicate treated moso bamboo particles reinforced PVC composites (BPPC) were calculated and compared with raw bamboo particles filled samples. The thermal characteristics of the BPPC were studied to investigate the feasibility of sodium silicate treatment on moso bamboo particles. The particle morphology and BPPC microstructure were investigated by scanning electron microscopy. Results showed that the tensile strength and modulus of elasticity of the BPPC increased before the concentration of sodium silicate solution reached 5% and got their maximum values of 15.72 MPa and 2956.80 MPa, respectively at 5% concentration. The modulus of rupture obtained the maximum value of 27.73 MPa at 2% concentration. The mechanical curve decreased as the concentration of solution went higher. Differential scanning calorimetric analysis illustrated that the sodium silicate solution treated BPPC possesses a better compatibility. More uniform dispersion of moso bamboo particles in PVC matrix was obtained after the sodium silicate treatment. Hence, the sodium silicate was a feasible and competitive agent of creating moso bamboo particles reinforced PVC composites.展开更多
A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a...A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.展开更多
Hydrophilic polymers are very useful in biomedical applications.In this study,biocom-patible polyethylene glycol(PEG)and polyvinylpyrrolidone(PVP)polymers end-capped with succinimidyl groups were either modified or sy...Hydrophilic polymers are very useful in biomedical applications.In this study,biocom-patible polyethylene glycol(PEG)and polyvinylpyrrolidone(PVP)polymers end-capped with succinimidyl groups were either modified or synthesised and attached to poly-vinylchloride surfaces.The modified surfaces were evaluated with cell adhesion and bacterial adhesion.3T3 mouse fibroblast cells and three bacteria species were used to evaluate surface adhesion activity.Results showed that the modified surface exhibited significantly reduced 3T3 cell adhesion with a 50%-69%decrease for PEG and a 64%-81%for PVP,as compared to unmodified polyvinylchloride.The modified surface also showed significantly reduced bacterial attachment with 22%-78%,18%-76%and 20%-75%decrease for PEG and 22%-76%,18%-76%and 20%-73%for PVP to Staphy-lococcus aureus,Escherichia coli and Pseudomonas aeruginosa,respectively,as compared to unmodified polyvinylchloride.It seems that an appropriate chain length or molecular weight(neither the longest nor the shortest chain length)determines the lowest cell and bacterial adhesion in terms of PEG.On the other hand,a mixture of polymers with different chain lengths exhibited the lowest cell and bacterial adhesion in terms of PVP.展开更多
文摘Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.
文摘In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.
文摘In this paper analysis of constant-intensity approximation of nonlinear interaction of the second-harmonic generation in ZnO/PMMA nanocomposite films for different concentrations of ZnO was carried out with regard to the losses and phase changes of all the interacting waves. The investigated samples were manufactured on the basis of ZnO nanoparticles embedded into polyvinylchloride polymeric matrix (PMMA) by the method of electrochemical deposition. The main goal of work is the exploration of the ZnO morphology and parameters of the second order susceptibilities. It is verified that the surface effects in ZnO/PMMA structures will give a larger contribution than the volume effects. The factors restricting the efficiency of the process of frequency conversion have been analyzed.
基金supported by the Ministry of E ducation and Science of Russian Federation,Contract #2014/87-1064 of the 30th of January 2014
文摘Introduction The falsification of industrial consumer goods and the emergence of counterfeit productions are important dangerous economic problems of brand manufacturers in many developed countries.The methods of falsification of counterfeit goods and production of various kinds of counterfeit are based on the substitution of true goods for not
文摘Biomaterial research has been going on for several years,and many companies are heavily investing in new product development.However,it is a contentious field of science.Biomaterial science is a field that combines materials science and medicine.The replacement or restoration of damaged tissues or organs enhances the patient’s quality of life.The deciding aspect is whether or not the body will accept a biomaterial.A biomaterial used for an implant must possess certain qualities to survive a long time.When a biomaterial is used for an implant,it must have specific properties to be long-lasting.A variety of materials are used in biomedical applications.They are widely used today and can be used individually or in combination.This review will aid researchers in the selection and assessment of biomaterials.Before using a biomaterial,its mechanical and physical properties should be considered.Recent biomaterials have a structure that closely resembles that of tissue.Antiinfective biomaterials and surfaces are being developed using advanced antifouling,bactericidal,and antibiofilm technologies.This review tries to cover critical features of biomaterials needed for tissue engineering,such as bioactivity,self-assembly,structural hierarchy,applications,heart valves,skin repair,bio-design,essential ideas in biomaterials,bioactive biomaterials,bioresorbable biomaterials,biomaterials in medical practice,biomedical function for design,biomaterial properties such as biocompatibility,heat response,non-toxicity,mechanical properties,physical properties,wear,and corrosion,as well as biomaterial properties such surfaces that are antibacterial,nanostructured materials,and biofilm disrupting compounds,are all being investigated.It is technically possible to stop the spread of implant infection.
基金supported by the National High Technology Research and Development Program of China ("863" Project) (Grant No 2009AA043603-2)the Science Fundation of Chinese University and the Education Department of Zhejiang Province (Grant No 200909353)
文摘The main objective of this research was to study the potential of sodium silicate modification on moso bamboo particles as reinforcements for thermoplastic. Moso bamboo particles were modified with sodium silicate aqueous solutions (of 0.5%, 1%, 2%, 5% and 10% concentrations). The mechanical properties of sodium silicate treated moso bamboo particles reinforced PVC composites (BPPC) were calculated and compared with raw bamboo particles filled samples. The thermal characteristics of the BPPC were studied to investigate the feasibility of sodium silicate treatment on moso bamboo particles. The particle morphology and BPPC microstructure were investigated by scanning electron microscopy. Results showed that the tensile strength and modulus of elasticity of the BPPC increased before the concentration of sodium silicate solution reached 5% and got their maximum values of 15.72 MPa and 2956.80 MPa, respectively at 5% concentration. The modulus of rupture obtained the maximum value of 27.73 MPa at 2% concentration. The mechanical curve decreased as the concentration of solution went higher. Differential scanning calorimetric analysis illustrated that the sodium silicate solution treated BPPC possesses a better compatibility. More uniform dispersion of moso bamboo particles in PVC matrix was obtained after the sodium silicate treatment. Hence, the sodium silicate was a feasible and competitive agent of creating moso bamboo particles reinforced PVC composites.
基金supported by the National Science Fund for Distinguished Young Scholars(21125418)the National Natural Science Foundation of China(21174098,21304062 and 21334004)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB430020)the China Postdoctoral Science Foundation(2013M541714)
文摘A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.
文摘Hydrophilic polymers are very useful in biomedical applications.In this study,biocom-patible polyethylene glycol(PEG)and polyvinylpyrrolidone(PVP)polymers end-capped with succinimidyl groups were either modified or synthesised and attached to poly-vinylchloride surfaces.The modified surfaces were evaluated with cell adhesion and bacterial adhesion.3T3 mouse fibroblast cells and three bacteria species were used to evaluate surface adhesion activity.Results showed that the modified surface exhibited significantly reduced 3T3 cell adhesion with a 50%-69%decrease for PEG and a 64%-81%for PVP,as compared to unmodified polyvinylchloride.The modified surface also showed significantly reduced bacterial attachment with 22%-78%,18%-76%and 20%-75%decrease for PEG and 22%-76%,18%-76%and 20%-73%for PVP to Staphy-lococcus aureus,Escherichia coli and Pseudomonas aeruginosa,respectively,as compared to unmodified polyvinylchloride.It seems that an appropriate chain length or molecular weight(neither the longest nor the shortest chain length)determines the lowest cell and bacterial adhesion in terms of PEG.On the other hand,a mixture of polymers with different chain lengths exhibited the lowest cell and bacterial adhesion in terms of PVP.