Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to...Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to an external stimulus, for example, to heat, water presence, light, etc. In this paper, the second definition will be approached. Hydrogels are crosslinked materials that can absorb a big amount of water. They generally can be considered as smart materials once they exhibit sensibility to external stimuli like to pH variation, as will be approached in this paper. Thus, chitosan/polyvinylpyrrolidone hydrogels of three different ratios between these two polymers (1:1, 7:3 and 3:7) were synthesized and putted in aqueous solution with different pHs. The pH was adjusted adding drops of NaOH and HCl, slowly. After the collection of results and in order to understand the phenomena in a visual way, models of the molecules were also elaborated using the Avogadro software. Therefore, it was possible to realize that the greater the ratio of chitosan in the hydrogel, the greater its sensitivity to pH. Such characteristic is associated with the amino (-NH2) groups in it structure, which are capable of protonating and deprotonating (depending of the pH), generating charges under the chemical structure of the material, which will expand its volume in order to minimize the repulsion between charges. In addition, it was also noted that the hydrogel expansion is inversely proportional to the pH increase. By practical tests, it was possible to conclude that chitosan/PVP hydrogel with ratio 7:3 is the most interesting once it presented a greater quantity of chitosan in its composition, what implied in more rigidity than the others and greater ease of handling, resulting in more reliable results. This hydrogel also showed higher sensitivity to pH.展开更多
Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fie...Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields.However,the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications.Herein,a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels(named PVP/PAM hydrogels),including the linear polymer polyvinylpyrrolidone(PVP)and cross-linked polyacrylamide(PAM)network.The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP.Meanwhile,the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%,tensile strength of 0.28 MPa and toughness of 2.17 MJ/m^(3).More importantly,the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces,so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications.It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects.展开更多
文摘Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to an external stimulus, for example, to heat, water presence, light, etc. In this paper, the second definition will be approached. Hydrogels are crosslinked materials that can absorb a big amount of water. They generally can be considered as smart materials once they exhibit sensibility to external stimuli like to pH variation, as will be approached in this paper. Thus, chitosan/polyvinylpyrrolidone hydrogels of three different ratios between these two polymers (1:1, 7:3 and 3:7) were synthesized and putted in aqueous solution with different pHs. The pH was adjusted adding drops of NaOH and HCl, slowly. After the collection of results and in order to understand the phenomena in a visual way, models of the molecules were also elaborated using the Avogadro software. Therefore, it was possible to realize that the greater the ratio of chitosan in the hydrogel, the greater its sensitivity to pH. Such characteristic is associated with the amino (-NH2) groups in it structure, which are capable of protonating and deprotonating (depending of the pH), generating charges under the chemical structure of the material, which will expand its volume in order to minimize the repulsion between charges. In addition, it was also noted that the hydrogel expansion is inversely proportional to the pH increase. By practical tests, it was possible to conclude that chitosan/PVP hydrogel with ratio 7:3 is the most interesting once it presented a greater quantity of chitosan in its composition, what implied in more rigidity than the others and greater ease of handling, resulting in more reliable results. This hydrogel also showed higher sensitivity to pH.
基金This work was financially supported by the National Natural Science Foundation of China(No.52273210).
文摘Semi-interpenetrating(semi-IPN)hydrogels formed by the continuous interpenetration of cross-linked polymer network and linear non-crosslinked polymer with multifunctionality are widely used in biomedical and other fields.However,the negative impact of linear polymer on the homogeneity of the cross-linked network often leads to a decrease in the mechanical properties of semi-IPN hydrogels and severely limits their applications.Herein,a bioinspired hydrogen-bonding induced phase separation strategy is presented to construct the tough semi-IPN polyvinylpyrrolidone/polyacrylamide hydrogels(named PVP/PAM hydrogels),including the linear polymer polyvinylpyrrolidone(PVP)and cross-linked polyacrylamide(PAM)network.The resultant PVPx/PAM hydrogels exhibit unique phase separation induced by the hydrogen bonding between PVP and PAM and affected by the amount of substance of PVP.Meanwhile,the phase separation of PVPx/PAM hydrogels results in excellent mechanical properties with a strain of 2590%,tensile strength of 0.28 MPa and toughness of 2.17 MJ/m^(3).More importantly,the hydrogen bonding between PVP and PAM firstly disrupts to dissipate energy under external forces,so the PVPx/PAM hydrogels exhibit good self-recovery properties and outperform chemically cross-linked PAM hydrogels in impact resistance and damping applications.It is believed that the PVPx/PAM hydrogels with hydrogen-bonding induced phase separation possess more potential application prospects.
文摘合成了一系列分子量较低的聚乙二醇-聚己内酯-聚乙二醇(Poly(ethylene glycol)-Polycaprolactone-Poly(ethylene glycol),PEG-PCL-PEG)三嵌段共聚物。分别采用FTIR和1H-NMR对其结构进行了表征。所合成的PEG-PCL-PEG共聚物具有良好的水溶性,当水溶液浓度高于临界凝胶浓度(Critical gel concentration,CGC)时,随着温度的变化聚合物水溶液会呈现特有的凝胶-溶胶转变。研究了共聚物亲水疏水链段的比例和长度,以及热历史等对凝胶-溶胶转变行为的影响。通过调节上述条件,可以在一定程度上拓宽凝胶-溶胶转变温度范围,有助于PEG-PCL-PEG水凝胶在可注射药物控制释放系统等方面的应用。