Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, ...Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, soil water movement in the unsaturated zone plays an important role in the transformation from rainfall infiltration to groundwater. The soil water movement models were developed by using HYDRUS-1D software at two typical experimental sites in Cangzhou(CZ) and Hengshui(HS) with different soil, vegetation and similar climate conditions. As shown in the results, the comparison in precipitation infiltration features between the two sites is distinct. The soil water experiences strong evaporation after precipitation infiltration, which accounts for 63% of the total infiltration at the HS site where the soil is homogenous. It is this strong evaporation effect that leads to slight increase of soil water storage. At the CZ site, where the soil is heterogeneous, the evaporation effect exists from July to October of the simulation period. The total evaporation accounts for 33% of the total infiltration, and the evaporation rate is slow. At the end of the simulation period, the soil water storage increases and the water table decreases, indicating a strong storage capacity at this site.展开更多
The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when desig...The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when designing irrigation projects, thereby saving time and cost of field measurement. Field measurements of infiltration were first made using a double ring infiltrometer. The test lasted for 180 mins in each location. Infiltration values ranged from 0.03 cm/min to 0.1 cm/min. The highest value was obtained in the Forest Block. Kostiakov’s infiltration model was then applied on the field data in order to determine the soils’ infiltration parameters and equations. The model empirical constants or parameters obtained were “m” and “n”. For “m” the values were: 0.53 for the soil of Forest Block, 0.42 for Poultry block, 0.50 for P.G. block, 0.41 for the soils of Staff School and Guest House. The corresponding “n” values were: 1.37, 1.12, 0.37, 1.79, and 1.38. Infiltration equations: 0.4It1.38, 0.4lt1.79, 0.42t1.12, and 0.53t1.37 were determined for the locations. These were used to simulate data which were evaluated by comparing them with the field data. The two data sets showed closed relationships. This implied that the model could be used to simulate water infiltration during irrigation projects in the farms of Michael Okpara University of Agriculture, Umudike.展开更多
Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of t...Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.展开更多
Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogen...Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.展开更多
基金financially supported by the 100-Talent Project of Chinese Academy of Sciencesthe Key Program of the National Natural Science Foundation of China (No.41471028)
文摘Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, soil water movement in the unsaturated zone plays an important role in the transformation from rainfall infiltration to groundwater. The soil water movement models were developed by using HYDRUS-1D software at two typical experimental sites in Cangzhou(CZ) and Hengshui(HS) with different soil, vegetation and similar climate conditions. As shown in the results, the comparison in precipitation infiltration features between the two sites is distinct. The soil water experiences strong evaporation after precipitation infiltration, which accounts for 63% of the total infiltration at the HS site where the soil is homogenous. It is this strong evaporation effect that leads to slight increase of soil water storage. At the CZ site, where the soil is heterogeneous, the evaporation effect exists from July to October of the simulation period. The total evaporation accounts for 33% of the total infiltration, and the evaporation rate is slow. At the end of the simulation period, the soil water storage increases and the water table decreases, indicating a strong storage capacity at this site.
文摘The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when designing irrigation projects, thereby saving time and cost of field measurement. Field measurements of infiltration were first made using a double ring infiltrometer. The test lasted for 180 mins in each location. Infiltration values ranged from 0.03 cm/min to 0.1 cm/min. The highest value was obtained in the Forest Block. Kostiakov’s infiltration model was then applied on the field data in order to determine the soils’ infiltration parameters and equations. The model empirical constants or parameters obtained were “m” and “n”. For “m” the values were: 0.53 for the soil of Forest Block, 0.42 for Poultry block, 0.50 for P.G. block, 0.41 for the soils of Staff School and Guest House. The corresponding “n” values were: 1.37, 1.12, 0.37, 1.79, and 1.38. Infiltration equations: 0.4It1.38, 0.4lt1.79, 0.42t1.12, and 0.53t1.37 were determined for the locations. These were used to simulate data which were evaluated by comparing them with the field data. The two data sets showed closed relationships. This implied that the model could be used to simulate water infiltration during irrigation projects in the farms of Michael Okpara University of Agriculture, Umudike.
文摘Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.
基金supported by the National Natural Science Foundation of China (No. 51579213)the National Key Research and Development Program of China (No. 2017YFC0403303)
文摘Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.