期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
1
作者 朱昶胜 赵博睿 +1 位作者 雷瑶 郭秀婷 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期473-481,共9页
We use the phase field method to track the gas-liquid interface based on the gas-liquid two-phase flow in the pool boiling process,and study the bubble nucleation,growth,deformation,departure and other dynamic behavio... We use the phase field method to track the gas-liquid interface based on the gas-liquid two-phase flow in the pool boiling process,and study the bubble nucleation,growth,deformation,departure and other dynamic behaviors on the heating surface under microgravity.By simulating the correlation between liquid undercooling and bubble dynamics,we find that the bubble growth time increases with the increase of liquid undercooling,but the effect of liquid undercooling on bubble height is not significant.Meanwhile,the gas-liquid-solid three-phase contact angle and the gravity level will also have an effect on the bubble growth time and bubble height.With the increase of the contact angle,the bubble growth time and bubble height when the bubble departs also increase.While the effect of gravity level is on the contrary,the smaller the gravity level is,the larger the bubble height and bubble growth time when the bubble separates. 展开更多
关键词 pool boiling single-bubble phase-field method low-gravity
下载PDF
Comparisons of Structured Surface Floors for Pool Boiling Enhancement at Low Heat Fluxes: Hands-On Learning Setup for Heat Transfer Classroom
2
作者 Birce Dikici Basim Q. A. Al-Sukaini 《World Journal of Engineering and Technology》 2023年第2期303-318,共16页
Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. ... Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. The pool boiling performance of water under atmospheric pressure of 1.025 bar is investigated by using several structured surfaces at heat fluxes of 28 and 35 kW/m<sup>2</sup>. Surfaces with holes, rectangular grooves, and mushroom fins are manufactured by an NC-controlled vertical milling machine. The heat flux versus excess temperature graph is plotted by using thermocouple measurements of water and base temperatures of the boiling vessel. The separation, rise, and growth of individual vapor bubbles from the surface during boiling were recorded with a digital camera. The results for the plain surface are compared to the Rohsenow correlation. The enhancement of heat transfer coefficient (h) ranged between 15% - 44.5% for all structured surfaces. The highest heat transfer coefficient enhancement is observed between 41% - 56.5% for holed surface-3 (405 holes) compared to the plain surface. The excess temperature dropped around 29% - 34% for holed surface-3 (405 holes) compared to the plain surface. The heat transfer coefficient increases as the spacing between channels or holes decreases. While the bubbles on holed and mushroomed surfaces were spherical, the bubbles on the flat and grooved surfaces were observed as formless. The suggested economical test design could be appropriate to keep students focused and participating in the classroom. 展开更多
关键词 boiling pool boiling Heat Transfer Coefficient Enhancement Techniques Engineering Education
下载PDF
Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model 被引量:1
3
作者 肖波齐 杨毅 许晓赋 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期405-411,共7页
A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanopartic... A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models. 展开更多
关键词 subcooled pool boiling Brownian motion fractal nanofluids
下载PDF
Examination of two-phase behaviors in porous media during pool boiling
4
作者 ZHANG ZhiHao GUAN ShuYa +1 位作者 WU Rui ZHAO ChangYing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1695-1713,共19页
The enhancement of pool boiling heat transfer using porous media has been extensively studied.Although the two-phase distribution and evolution in porous media are crucial to the heat transfer performance,including th... The enhancement of pool boiling heat transfer using porous media has been extensively studied.Although the two-phase distribution and evolution in porous media are crucial to the heat transfer performance,including the critical heat flux(CHF)and heat transfer coefficient(HTC),direct observation of the two-phase flow inside the media is limited owing to the blockage of the direct view from the porous structures.In this study,pool boiling visualization experiments were conducted on porous samples with different throat widths in deionized water.The results showed that the HTC increased with the throat width.Additionally,the growth-contraction cycle of the vapor region and the formation and drying of the wall liquid film inside the porous media were investigated.The vapor region,including the maximum and minimum areas in the boiling cycle,was quantitatively described.Furthermore,the relationship between the minimum gas-phase area and HTC peak was identified.A one-dimensional transient model was developed considering solid skeleton heat conduction,liquid film evaporation,and vapor region growth to quantitatively study the influence of heat flux on the internal two-phase flow.The model successfully captured the maximum gas-phase area,duration of boiling cycles,and HTC trends at specific heat fluxes.The results of this quantitative study provide insights into the internal two-phase distribution and evolution induced by pool boiling. 展开更多
关键词 porous media two-phase behaviors pool boiling
原文传递
Numerical investigation of heat transfer performance and bubble behavior of nucleate pool boiling in a confined space under rolling conditions
5
作者 Jianjie Cheng Jiangwei Sun +3 位作者 Weihao Ji Yu Dong Wei Li Yurong Chen 《Energy Storage and Saving》 2023年第1期336-347,共12页
Nucleate pool boiling process is widely used in heat exchangers because of its excellent heat transfer performance.With the gradual increase of applications,more and more equipments work in a non-static state,but ther... Nucleate pool boiling process is widely used in heat exchangers because of its excellent heat transfer performance.With the gradual increase of applications,more and more equipments work in a non-static state,but there is little research under rolling conditions.Therefore,it is necessary to investigate the influence of rolling motion on the nucleate pool boiling process.In this study,a numerical investigation of the nucleate pool boiling process under static and rolling conditions is performed based on the volume-of-fluid(VOF)method.Physical fields and phase distribution under static state and rolling motion are compared to investigate the effect of rolling motion on the nucleate pool boiling process.The results show that rolling motion greatly influences the bubble behavior and void fraction owing to the differences between flow fields.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°,and by 11.84%,22.27%,and 21.81%as the rolling period increased from 1 s to 3 s.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°.The heat transfer coefficients of different cases are compared,and it is found that the effects of rolling motion on heat transfer coefficients can be ignored. 展开更多
关键词 Nucleate pool boiling Rolling condition Bubble behavior Heat transfer characteristic
原文传递
Numerical Investigation on Pool Boiling Mechanism of Hybrid Structures with Metal Foam and Square Column by LBM 被引量:1
6
作者 LIU Zhongyi QIN Jie +2 位作者 WU Ziheng YUE Sijia XU Zhiguo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2293-2308,共16页
In the present study, pool boiling heat transfer performance and bubble behaviors of hybrid structures with metal foam and square column are investigated by lattice Boltzmann method. By using the vapor-liquid phase ch... In the present study, pool boiling heat transfer performance and bubble behaviors of hybrid structures with metal foam and square column are investigated by lattice Boltzmann method. By using the vapor-liquid phase change model of Gong-Cheng and Peng-Robinson equation of state, the effects of structural parameters, including metal foam thickness, porosity, column height and ratio of column width(W) to gap spacing(D) are investigated in details. The results show that hybrid structure performs better than pure columnar structure in pool boiling heat transfer. The hybrid structure accelerates bubble growth by fluid disturbance while metal skeletons prevent the bubble escaping. The optimum ratio of column width to gap spacing decreases with the increase of heat flux and HTC(heat transfer coefficient) can achieve an increase up to 25% when W/D change from 5/3 to 1/3. The increase of column height enhances heat transfer by expanding surface area and providing space for bubble motion. The metal foam thickness and porosity have a little influence on pool boiling heat transfer performance, but they have an important effect on bubble motion in the regime. 展开更多
关键词 hybrid structure metal foam square column pool boiling heat transfer lattice Boltzmann method
原文传递
An Improved Treatment on the Apparent Contact Angle of a Single-Bubble in Consideration of Microlayer for Simulations of Nucleate Pool Boiling
7
作者 CHEN Zhihao WU Feifei +2 位作者 UTAKA Yoshio CHEN Ping LIANG Chen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第6期1951-1959,共9页
Numerical simulation of single-bubble growth behavior during nucleate pool boiling was developed based on the volume of fluid method considering the thin liquid layer under the bubble(microlayer).However,the experimen... Numerical simulation of single-bubble growth behavior during nucleate pool boiling was developed based on the volume of fluid method considering the thin liquid layer under the bubble(microlayer).However,the experimental values of apparent contact angle(the small region connecting the microlayer and bulk liquid)are crucial for the simulations.Reliance on experimental results limited the further application of such numerical method.In this study,a new method calculating the force balance,used to determine the interface shape near the apparent contact angle,was proposed instead of using the experimental values of the apparent contact angle.As a result,the good agreement was shown between the simulation results obtained based on the new and previous numerical methods.The simulation results were also in consistent with the experimental results.It can be concluded that the single-bubble behavior,including the heat transfer characteristics,during nucleate pool boiling can be simulated based on the proposed method. 展开更多
关键词 numerical simulation nucleate pool boiling bubble growth MICROLAYER surface tension VOF method
原文传递
Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling
8
作者 Abdoulaye Coulibaly LIN Xipeng +1 位作者 Bi Jingliang David M Christopher 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第12期2171-2175,共5页
Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand ... Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer.The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure.Some observations also showed coalescence with no increase in the heat transfer rate.The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles. 展开更多
关键词 MICROHEATER pool boiling bubble coalescence bubble dynamics
原文传递
Lattice Boltzmann Simulation of Nucleate Pool Boiling in Saturated Liquid
9
作者 Yoshito Tanaka Masato Yoshino Tetsuo Hirata 《Communications in Computational Physics》 SCIE 2011年第5期1347-1361,共15页
A thermal lattice Boltzmann method(LBM)for two-phase fluid flows in nucleate pool boiling process is proposed.In the present method,a new function for heat transfer is introduced to the isothermal LBM for two-phase im... A thermal lattice Boltzmann method(LBM)for two-phase fluid flows in nucleate pool boiling process is proposed.In the present method,a new function for heat transfer is introduced to the isothermal LBM for two-phase immiscible fluids with large density differences.The calculated temperature is substituted into the pressure tensor,which is used for the calculation of an order parameter representing two phases so that bubbles can be formed by nucleate boiling.By using this method,twodimensional simulations of nucleate pool boiling by a heat source on a solid wall are carried out with the boundary condition for a constant heat flux.The flow characteristics and temperature distribution in the nucleate pool boiling process are obtained.It is seen that a bubble nucleation is formed at first and then the bubble grows and leaves the wall,finally going up with deformation by the buoyant effect.In addition,the effects of the gravity and the surface wettability on the bubble diameter at departure are numerically investigated.The calculated results are in qualitative agreement with other theoretical predictions with available experimental data. 展开更多
关键词 Lattice Boltzmann method(LBM) two-phase fluid flows heat transfer nucleate pool boiling WETTABILITY
原文传递
Application of Superhydrophobic Surface on Boiling Heat Transfer Characteristics of Nanofluids
10
作者 Cong Qi Yuxing Wang +2 位作者 Zi Ding Jianglin Tu Mengxin Zhu 《Energy Engineering》 EI 2021年第4期825-852,共28页
Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been... Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been used in the direction of enhanced heat transfer for their superior thermophysical property.The wetting,spreading and ripple phenomena of superhydrophobic surfaces widely exist in nature and daily life.It has great application value for engineering technology.In this article,the boiling heat exchange characteristics of nanofluids on superhydrophobic surface are numerically studied.It was found that with the increase of superheating degree,the steam volume ratio of unmodified heated surface increases to saturation,while the steam volume and evaporation ratio of modified superhydrophobic surface increase firstly and then decrease.At the same time,bubbles are generated and accumulated more fully on superhydrophobic surface.It was also found that nanofluids with low viscosity are more affected by superhydrophobic surface characteristics,and the increase is more significant with high superheating degree,and the superhydrophobic surface is beneficial to enhancing boiling heat exchange.Compared with the simulation results,it could be concluded that the boiling heat exchange performance of CuO-water nano-fluids on the modified superhydrophobic surface is better than that of CuO-ethylene glycol nanofluids under high superheating degree. 展开更多
关键词 Nanofluids superhydrophobic surface pool boiling heat transfer numerical simulation
下载PDF
Heat transfer performance of porous titanium
11
作者 Shi-feng Liu An Li +2 位作者 Yao-jia Ren Dong-feng Li Zhao-hui Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第5期556-560,共5页
Porous titanium fibre materials with different structural parameters were prepared by vacu- um sintering method. The thickness, porosity and wire diameter of prepared materials were investigated to understand the effe... Porous titanium fibre materials with different structural parameters were prepared by vacu- um sintering method. The thickness, porosity and wire diameter of prepared materials were investigated to understand the effects of structural parameters on pool heat transmission performance of titanium fibre porous material. As a result, better heat transfer performance is obtained when overheating is less than 10 ℃. In addition, when the wire diameter is smal- ler, the heat transfer is better. However, when superheating is above 10 ℃, heat transfer performance can be improved by increasing the wire diameter. Moreover, thickness influ- ences the superficial area of the prepared material and affects the thermal resistance when bubbles move inside the material; superficial area and thermal resistance are the two key factors that jointly impact the heat transfer in relation to the thickness of the materials. Ex- perimental results also show that the materials of 3 mm in thickness exhibit the best per formance for heat transmission. Furthermore, changes in porosity affect the nucleation site density and the resistance to bubble detachment; however, the nucleation site density and the resistance to bubble detachment conflict with each other. In summary, the titanium fi- bre porous material with a 50% porosity exhibits suitable heat transfer performance. 展开更多
关键词 Titanium fibre Porous material Vacuum sintering pool boiling Heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部