期刊文献+
共找到3,805篇文章
< 1 2 191 >
每页显示 20 50 100
An active learning workflow for predicting hydrogen atom adsorption energies on binary oxides based on local electronic transfer features
1
作者 Wenhao Jing Zihao Jiao +2 位作者 Mengmeng Song Ya Liu Liejin Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1489-1496,共8页
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still... Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces. 展开更多
关键词 Machine learning Adsorption energy Binary oxide Electron transfer active learning
下载PDF
A Facial Expression Recognition Method Integrating Uncertainty Estimation and Active Learning
2
作者 Yujian Wang Jianxun Zhang Renhao Sun 《Computers, Materials & Continua》 SCIE EI 2024年第10期533-548,共16页
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands signific... The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method. 展开更多
关键词 Expression recognition active learning self-supervised learning uncertainty estimation
下载PDF
Batch Active Learning for Multispectral and Hyperspectral Image Segmentation Using Similarity Graphs
3
作者 Bohan Chen Kevin Miller +1 位作者 Andrea L.Bertozzi Jon Schwenk 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1013-1033,共21页
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi... Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels. 展开更多
关键词 Image segmentation Graph learning Batch active learning Hyperspectral image
下载PDF
Model Change Active Learning in Graph-Based Semi-supervised Learning
4
作者 Kevin S.Miller Andrea L.Bertozzi 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1270-1298,共29页
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes... Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art. 展开更多
关键词 active learning Graph-based methods Semi-supervised learning(SSL) Graph Laplacian
下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
5
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment active magnetic actuator
下载PDF
Physics-Based Active Learning for Design Space Exploration and Surrogate Construction for Multiparametric Optimization
6
作者 Sergio Torregrosa Victor Champaney +2 位作者 Amine Ammar Vincent Herbert Francisco Chinesta 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1899-1923,共25页
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice... The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied. 展开更多
关键词 active learning(AL) Artificial intelligence(AI) OPTIMIZATION Physics based
下载PDF
Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners:A Recommendation System
7
作者 Ameni Ellouze Nesrine Kadri +1 位作者 Alaa Alaerjan Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第4期351-372,共22页
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t... Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women. 展开更多
关键词 Human physical activities smartphone sensors deep learning distributed monitoring recommendation system uncertainty HEALTHY CALORIES
下载PDF
Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning
8
作者 K.Akilandeswari Nithya Rekha Sivakumar +2 位作者 Hend Khalid Alkahtani Shakila Basheer Sara Abdelwahab Ghorashi 《Computers, Materials & Continua》 SCIE EI 2024年第1期1189-1205,共17页
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor... In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods. 展开更多
关键词 Internet of Things smart health care monitoring human activity recognition intelligent agent learning statistical partial regression support vector
下载PDF
Research on classification method of high myopic maculopathy based on retinal fundus images and optimized ALFA-Mix active learning algorithm 被引量:2
9
作者 Shao-Jun Zhu Hao-Dong Zhan +4 位作者 Mao-Nian Wu Bo Zheng Bang-Quan Liu Shao-Chong Zhang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期995-1004,共10页
AIM:To conduct a classification study of high myopic maculopathy(HMM)using limited datasets,including tessellated fundus,diffuse chorioretinal atrophy,patchy chorioretinal atrophy,and macular atrophy,and minimize anno... AIM:To conduct a classification study of high myopic maculopathy(HMM)using limited datasets,including tessellated fundus,diffuse chorioretinal atrophy,patchy chorioretinal atrophy,and macular atrophy,and minimize annotation costs,and to optimize the ALFA-Mix active learning algorithm and apply it to HMM classification.METHODS:The optimized ALFA-Mix algorithm(ALFAMix+)was compared with five algorithms,including ALFA-Mix.Four models,including Res Net18,were established.Each algorithm was combined with four models for experiments on the HMM dataset.Each experiment consisted of 20 active learning rounds,with 100 images selected per round.The algorithm was evaluated by comparing the number of rounds in which ALFA-Mix+outperformed other algorithms.Finally,this study employed six models,including Efficient Former,to classify HMM.The best-performing model among these models was selected as the baseline model and combined with the ALFA-Mix+algorithm to achieve satisfactor y classification results with a small dataset.RESULTS:ALFA-Mix+outperforms other algorithms with an average superiority of 16.6,14.75,16.8,and 16.7 rounds in terms of accuracy,sensitivity,specificity,and Kappa value,respectively.This study conducted experiments on classifying HMM using several advanced deep learning models with a complete training set of 4252 images.The Efficient Former achieved the best results with an accuracy,sensitivity,specificity,and Kappa value of 0.8821,0.8334,0.9693,and 0.8339,respectively.Therefore,by combining ALFA-Mix+with Efficient Former,this study achieved results with an accuracy,sensitivity,specificity,and Kappa value of 0.8964,0.8643,0.9721,and 0.8537,respectively.CONCLUSION:The ALFA-Mix+algorithm reduces the required samples without compromising accuracy.Compared to other algorithms,ALFA-Mix+outperforms in more rounds of experiments.It effectively selects valuable samples compared to other algorithms.In HMM classification,combining ALFA-Mix+with Efficient Former enhances model performance,further demonstrating the effectiveness of ALFA-Mix+. 展开更多
关键词 high myopic maculopathy deep learning active learning image classification ALFA-Mix algorithm
下载PDF
Active Machine Learning for Chemical Engineers:A Bright Future Lies Ahead! 被引量:1
10
作者 Yannick Ureel Maarten R.Dobbelaere +4 位作者 Yi Ouyang Kevin De Ras Maarten K.Sabbe Guy B.Marin Kevin M.Van Geem 《Engineering》 SCIE EI CAS CSCD 2023年第8期23-30,共8页
By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and a... By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering.While active machine learning algorithms are maturing,their applications are falling behind.In this article,three types of challenges presented by active machine learning—namely,convincing the experimental researcher,the flexibility of data creation,and the robustness of active machine learning algorithms—are identified,and ways to overcome them are discussed.A bright future lies ahead for active machine learning in chemical engineering,thanks to increasing automation and more efficient algorithms that can drive novel discoveries. 展开更多
关键词 active machine learning active learning Bayesian optimization Chemical engineering Design of experiments
下载PDF
Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations
11
作者 Zhifeng Xu Jiyin Cao +2 位作者 Gang Zhang Xuyong Chen Yushun Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期306-313,共8页
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand... This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability. 展开更多
关键词 active learning Monte-carlo simulation K-nearest neighbors Reliability estimation CLASSIFICATION
下载PDF
Distributed Active Partial Label Learning
12
作者 Zhen Xu Weibin Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2627-2650,共24页
Active learning(AL)trains a high-precision predictor model from small numbers of labeled data by iteratively annotating the most valuable data sample from an unlabeled data pool with a class label throughout the learn... Active learning(AL)trains a high-precision predictor model from small numbers of labeled data by iteratively annotating the most valuable data sample from an unlabeled data pool with a class label throughout the learning process.However,most current AL methods start with the premise that the labels queried at AL rounds must be free of ambiguity,which may be unrealistic in some real-world applications where only a set of candidate labels can be obtained for selected data.Besides,most of the existing AL algorithms only consider the case of centralized processing,which necessitates gathering together all the unlabeled data in one fusion center for selection.Considering that data are collected/stored at different nodes over a network in many real-world scenarios,distributed processing is chosen here.In this paper,the issue of distributed classification of partially labeled(PL)data obtained by a fully decentralized AL method is focused on,and a distributed active partial label learning(dAPLL)algorithm is proposed.Our proposed algorithm is composed of a fully decentralized sample selection strategy and a distributed partial label learning(PLL)algorithm.During the sample selection process,both the uncertainty and representativeness of the data are measured based on the global cluster centers obtained by a distributed clustering method,and the valuable samples are chosen in turn.Meanwhile,using the disambiguation-free strategy,a series of binary classification problems can be constructed,and the corresponding cost-sensitive classifiers can be cooperatively trained in a distributed manner.The experiment results conducted on several datasets demonstrate that the performance of the dAPLL algorithm is comparable to that of the corresponding centralized method and is superior to the existing active PLL(APLL)method in different parameter configurations.Besides,our proposed algorithm outperforms several current PLL methods using the random selection strategy,especially when only small amounts of data are selected to be assigned with the candidate labels. 展开更多
关键词 active learning partial label learning distributed processing disambiguation-free strategy
下载PDF
Active Learning Strategies for Textual Dataset-Automatic Labelling
13
作者 Sher Muhammad Daudpota Saif Hassan +2 位作者 Yazeed Alkhurayyif Abdullah Saleh Alqahtani Muhammad Haris Aziz 《Computers, Materials & Continua》 SCIE EI 2023年第8期1409-1422,共14页
The Internet revolution has resulted in abundant data from various sources,including social media,traditional media,etcetera.Although the availability of data is no longer an issue,data labelling for exploiting it in ... The Internet revolution has resulted in abundant data from various sources,including social media,traditional media,etcetera.Although the availability of data is no longer an issue,data labelling for exploiting it in supervised machine learning is still an expensive process and involves tedious human efforts.The overall purpose of this study is to propose a strategy to automatically label the unlabeled textual data with the support of active learning in combination with deep learning.More specifically,this study assesses the performance of different active learning strategies in automatic labelling of the textual dataset at sentence and document levels.To achieve this objective,different experiments have been performed on the publicly available dataset.In first set of experiments,we randomly choose a subset of instances from training dataset and train a deep neural network to assess performance on test set.In the second set of experiments,we replace the random selection with different active learning strategies to choose a subset of the training dataset to train the same model and reassess its performance on test set.The experimental results suggest that different active learning strategies yield performance improvement of 7% on document level datasets and 3%on sentence level datasets for auto labelling. 展开更多
关键词 active learning automatic labelling textual datasets
下载PDF
Enhancing Semantic Segmentation through Reinforced Active Learning: Combating Dataset Imbalances and Bolstering Annotation Efficiency
14
作者 Dong Han Huong Pham Samuel Cheng 《Journal of Electronic & Information Systems》 2023年第2期45-60,共16页
This research addresses the challenges of training large semantic segmentation models for image analysis,focusing on expediting the annotation process and mitigating imbalanced datasets.In the context of imbalanced da... This research addresses the challenges of training large semantic segmentation models for image analysis,focusing on expediting the annotation process and mitigating imbalanced datasets.In the context of imbalanced datasets,biases related to age and gender in clinical contexts and skewed representation in natural images can affect model performance.Strategies to mitigate these biases are explored to enhance efficiency and accuracy in semantic segmentation analysis.An in-depth exploration of various reinforced active learning methodologies for image segmentation is conducted,optimizing precision and efficiency across diverse domains.The proposed framework integrates Dueling Deep Q-Networks(DQN),Prioritized Experience Replay,Noisy Networks,and Emphasizing Recent Experience.Extensive experimentation and evaluation of diverse datasets reveal both improvements and limitations associated with various approaches in terms of overall accuracy and efficiency.This research contributes to the expansion of reinforced active learning methodologies for image segmentation,paving the way for more sophisticated and precise segmentation algorithms across diverse domains.The findings emphasize the need for a careful balance between exploration and exploitation strategies in reinforcement learning for effective image segmentation. 展开更多
关键词 Semantic segmentation active learning Reinforcement learning
下载PDF
A Critical Review of Active Distribution Network Reconfiguration:Concepts,Development,and Perspectives
15
作者 Bo Yang Rui Zhang +10 位作者 Jie Zhang Xianlong Cheng Jiale Li Yimin Zhou Yuanweiji Hu Bin He Gongshuai Zhang Xiuping Du Si Ji Yiyan Sang Zhengxun Guo 《Energy Engineering》 EI 2024年第12期3487-3547,共61页
In recent years,the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex.Consequently,a large number of active distribution ne... In recent years,the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex.Consequently,a large number of active distribution network reconfiguration techniques have emerged to reduce system losses,improve system safety,and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network.While scholars have previously reviewed these methods,they all have obvious shortcomings,such as a lack of systematic integration of methods,vague classification,lack of constructive suggestions for future study,etc.Therefore,this paper attempts to provide a comprehensive and profound review of 52 methods and applications of active distribution network reconfiguration through systematic method classification and enumeration.Specifically,these methods are classified into five categories,i.e.,traditional methods,mathematical methods,meta-heuristic algorithms,machine learning methods,and hybrid methods.A thorough comparison of the various methods is also scored in terms of their practicality,complexity,number of switching actions,performance improvement,advantages,and disadvantages.Finally,four summaries and four future research prospects are presented.In summary,this paper aims to provide an up-to-date and well-rounded manual for subsequent researchers and scholars engaged in related fields. 展开更多
关键词 active distribution network RECONFIGURATION meta-heuristic algorithm machine learning
下载PDF
Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences 被引量:1
16
作者 Umair Muneer Butt Hadiqa Aman Ullah +3 位作者 Sukumar Letchmunan Iqra Tariq Fadratul Hafinaz Hassan Tieng Wei Koh 《Computers, Materials & Continua》 SCIE EI 2023年第3期5017-5033,共17页
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments... Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets. 展开更多
关键词 Human activity recognition deep learning transfer learning neural network ensemble learning SPATIO-TEMPORAL
下载PDF
Active learning based on maximizing information gain for content-based image retrieval
17
作者 徐杰 施鹏飞 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期431-435,共5页
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac... This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations. 展开更多
关键词 active learning content-based image retrieval relevance feedback support vector machines similarity measure
下载PDF
Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services 被引量:2
18
作者 E.Dhiravidachelvi M.Suresh Kumar +4 位作者 L.D.Vijay Anand D.Pritima Seifedine Kadry Byeong-Gwon Kang Yunyoung Nam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期961-977,共17页
Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,... Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures. 展开更多
关键词 Artificial intelligence human activity recognition deep learning deep belief network hyperparameter tuning healthcare
下载PDF
Visualization for Explanation of Deep Learning-Based Defect Detection Model Using Class Activation Map 被引量:1
19
作者 Hyunkyu Shin Yonghan Ahn +3 位作者 Mihwa Song Heungbae Gil Jungsik Choi Sanghyo Lee 《Computers, Materials & Continua》 SCIE EI 2023年第6期4753-4766,共14页
Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however... Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however,the predicted results have uncertainty in providing accurate informa-tion to users because of the“black box”problem in the deep learning model.Therefore,this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification.The visual repre-sentative gradient-weights class activation mapping(Grad-CAM)method is adopted to provide visually explainable information.A visualizing evaluation index is proposed to quantitatively analyze visual representations;this index reflects a rough estimate of the concordance rate between the visualized heat map and intended defects.In addition,an ablation study,adopting three-branch combinations with the VGG16,is implemented to identify perfor-mance variations by visualizing predicted results.Experiments reveal that the proposed model,combined with hybrid pooling,batch normalization,and multi-attention modules,achieves the best performance with an accuracy of 97.77%,corresponding to an improvement of 2.49%compared with the baseline model.Consequently,this study demonstrates that reliable results from an automatic defect classification model can be provided to an inspector through the visual representation of the predicted results using CNN models. 展开更多
关键词 Defect detection VISUALIZATION class activation map deep learning EXPLANATION visualizing evaluation index
下载PDF
Modified Wild Horse Optimization with Deep Learning Enabled Symmetric Human Activity Recognition Model
20
作者 Bareen Shamsaldeen Tahir Zainab Salih Ageed +1 位作者 Sheren Sadiq Hasan Subhi R.M.Zeebaree 《Computers, Materials & Continua》 SCIE EI 2023年第5期4009-4024,共16页
Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount ... Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches. 展开更多
关键词 Human activity recognition SYMMETRY deep learning machine learning pattern recognition time series classification
下载PDF
上一页 1 2 191 下一页 到第
使用帮助 返回顶部