Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this reg...Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this region. According to their influencing factors and reciprocity mechanism, using system dynamics approaches, this paper built a SD model for measuring the carrying capacity of resources and environment of the city clusters in the central China, and through setting different development models, the comprehensive measurement analysis on the carrying capacity was carried out. The results show that the model of promoting socio-economic development under the protection of resources and environment is the optimal model for promoting the harmony development of resources, environment, society and economy in the city clusters. According to this model, the optimum population scale of the city clusters in 2020 is 42.80×106 persons, and the moderate economic development scale is 22.055×1012 yuan (RMB). In 1996-2020, the carrying capacity of resources and environment in the city clusters took on obvious phase-change characteristics. During the studied period, it is basically at the initial development stage, and will come through the development process from slow development to speedup development.展开更多
The authors once made a preliminary research on population carrying capacity of the land in the Economic Area of Zhujiang Delta (EAZD for short) in 1995, and reckoned that the ultimate population in this region will b...The authors once made a preliminary research on population carrying capacity of the land in the Economic Area of Zhujiang Delta (EAZD for short) in 1995, and reckoned that the ultimate population in this region will be 23 550 thousand by year of 2000. While the population in being in EAZD was 22.62 million in 1999.This accords with the prefigured result in the rough from the point of view of development. According to the data of plow land resources from the 2000 Statistical Yearbook of EAZD and the study on the population-foodstuff-plow land relationship, this paper calculates the productive potential of plow land and the population carrying capacity of land by year of 2010, and puts forward the countermeasures for improving the population carrying capacity of land in this region.展开更多
This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based ...This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.展开更多
Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict devel...Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict development in a region.In this paper,based on a systematic review of China's geological environment,groundwater resources,mineral resources,other geological resources and the environmental carrying capacity research status,the relationship between the natural resource environmental system and the socio-economic system is studied.Then a "coordination theory of resources and environmental carrying"is proposed.Next,on the basis of an evaluation experiment performed at different scales and for different types of regions,the technical methods for an evaluation of the geological resources and environmental carrying capacity at the regional (inter-provincial)and provincial scales in China are established for the first time.This paper presents a standardized method based on technical ideas, evaluation methods,and index systems for geological resource and environmental carrying capacity evaluation.Finally,an evaluation of the groundwater resource carrying capacity in China is used as an example for the demonstration of the groundwater resource background and use of state evaluation methods.展开更多
Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available wate...Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range.展开更多
[Objectives]To make safety evaluation of water environment carrying capacity of five cities in Ningxia based on ecological footprint of water resources.[Methods]With the help of the grey relational model,15 indicators...[Objectives]To make safety evaluation of water environment carrying capacity of five cities in Ningxia based on ecological footprint of water resources.[Methods]With the help of the grey relational model,15 indicators were selected from the natural,economic,and social aspects,and the most influential factors in the three fields were selected.Based on the concept of ecological priority,the water resources carrying capacity of the five cities in Ningxia from 2010 to 2019 was calculated with the help of the water resources ecological footprint model.Then,the indicators of the water resources ecological footprint model were coupled with the existing indicators to establish a comprehensive evaluation indicator system.Finally,the changes of the water environment carrying capacity of the five cities in Ningxia were analyzed with the help of the principal component analysis(PCA).[Results]The ecological pressure of water resources and the ecological deficit of water resources in the five cities were relatively large.Specifically,Yinchuan City had the most obvious deficit of water resources but good carrying capacity;Zhongwei City had a large ecological deficit of water resources,poor carrying capacity,and the largest ecological pressure index of water resources;Guyuan City had low water resources ecological deficit,water resources ecological carrying capacity and water resources ecological pressure index.[Conclusions]Through the analysis of the coupling indicator system,it can be seen that the water environment carrying capacity of the five cities is in an upward trend,indicating that the water environment in each region tends to become better.展开更多
Based on such principles as sustainable development and ecological cycle, this paper evaluates the water resources carrying capacity(WCC) of Changchun-Jilin region using a population-economy-water resources correlatio...Based on such principles as sustainable development and ecological cycle, this paper evaluates the water resources carrying capacity(WCC) of Changchun-Jilin region using a population-economy-water resources correlation evaluation model built on the basis of WCC evaluation method as elaborated in the methodology of Functional Zoning of Population Development. Results show that the annual WCC of Changchun-Jilin region is able to support the population there, as a basic balance is struck between population and water resources. The incorporation of WCC into overall urban planning is one of the building blocks for sustainable city development with an advisable size.展开更多
As a concept to describe development restrictions,resources and environment carrying capacity(RECC)research has developed over more than 100 years since it was first proposed at the beginning of the 20th century.It ...As a concept to describe development restrictions,resources and environment carrying capacity(RECC)research has developed over more than 100 years since it was first proposed at the beginning of the 20th century.It is now regarded as a significant factor in evaluating the level of cooperation between regional population,resources,and environment;and it is currently used as an effective and operational tool to guide regional sustainable development.This article first reviews the origin of RECC and its early headway.It then reviews the historical development of RECC from single factors,such as land resources carrying capacity,water resources carrying capacity and environmental carrying capacity(environmental capacity),to more comprehensive research,such as comprehensive evaluation,emergy analysis,and ecological footprint analysis.In general,it appears that comprehensive research will become increasingly important in RECC research.However,there are several deficiencies in the current state of comprehensive research.Firstly,comprehensive RECC research lacks a common measurement standard,though some scholars have attempted to create one.Secondly,the RECC evaluation of open systems and dynamic studies should be strengthened.Thirdly,more attention should be paid to standardization,digitalization,and systematization to promote the applicability of RECC research to national practical demands.展开更多
With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resourc...With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resource and environment carrying capacity provides a means of assessing regional development potential by measuring regional sustainable development in terms of economy,population and resources&environment.This study develops a conceptual framework for resource and environment carrying capacity estimation to support the co-development planning of industries,population and resources&environment.First,the framework constructs an index system for evaluating importance of industry or influence based on the role of industry played in the local socio-economic system.Then,the framework computes the quantitative relations through the importance of local industry,population size and resource utilization and environment effects,and subsequently estimates the resource and environment carrying capacity of the study area.With a particular attention to its land resources,water resources and environment,the Tibet case study shows that:the non-ferrous metal mining,tourism,liquor and refined tea industries play a pillar role in the Tibet’s socio-economic system;under each industrial structure,land resource carrying capacity is the weakest,and water resources carrying capacity is the strongest;to focus on tourism will improve local resource and environment carrying capacity.The research results provide a solid guide for Tibet government’s co-actions in industrial restructuring,ecological protection,and the pursuit of economic development.This study will contribute to bridge the gap between theoretical research and practical applications of resource and environment carrying capacity,and help local governments plan the regional“socio-ecological”sustainable development.展开更多
Research on the relationship between national resource constraint-region types and environmental carrying capacity is essential for the continued development of Chinese industrialization and urbanization.Thus,utilizin...Research on the relationship between national resource constraint-region types and environmental carrying capacity is essential for the continued development of Chinese industrialization and urbanization.Thus,utilizing a series of key indexes including the per-capita potential of available land resources,the per-capita potential of available water resources,the degree of environmental stress,and the degree of ecological restriction,a step-by-step,integrated measuring method is presented here to understand the constrained carrying elements of water and land resources as well as environment and ecology.Spatial differences are analyzed and area types classified at the county level across China.Results reveal that:(1)Almost 90%of China is strongly constrained by both resources and the environment,while nearly 50%of national territory is strongly constrained by two elements,especially in areas of intensive population and industry to the east of the Helan-Longmen Mountain line;(2)Densely populated areas of eastern and central China,as well as on the Tibetan Plateau,are strongly constrained by a shortage of land resources,while North China,the northwest,northeast,the Sichuan basin,and some southern cities are experiencing strong constraints because of water shortages.In contrast,the North China plain,the Yangtze River delta,northern Jiangsu,Sichuan province,Chongqing municipality,Guizhou and Guangxi provinces,the northeast plain,and the northern Loess Plateau are constrained by high levels of environmental stress.Areas of China that are strongly ecologically constrained tend to be concentrated to the southwest of the Tianshan-Dabie Mountain line,as well as in the northeast on the Loess Plateau,in the Alashan of Inner Mongolia,in northeast China,and in the northern Jiangsu coastal area;(3)Constraints on national resources and environmental carrying capacity are diverse and cross-cut China,meanwhile,multi-element spatial distribution does reveal a degree of relative centralization.With the exception of the Tibetan Plateau which is resources-ecological constraint,other areas subject to cross constraints are mainly concentrated to the east of the Helan-Longmen Mountain line.展开更多
The study of waters ecosystem and their population carrying capacity demonstrates the role of these ecosystems in economic and social development and provides a theoretical basis for the management and allocation of a...The study of waters ecosystem and their population carrying capacity demonstrates the role of these ecosystems in economic and social development and provides a theoretical basis for the management and allocation of aquatic ecosystems. In this study, the concept of waters ecosystem population carrying capacity was defined and developmental trends in the population carrying capacity of waters ecosystem in China were evaluated. Results show that waters ecosystem population carrying capacity in China increased from 0.176×109 person year-1 in 2000 to 0.255 × 109 person year-1 in 2010; the population carrying capacity of the standard sea remained at 0.2-0.3 person ha 1; and the standard inland waters population carrying capacity increased from 1.8 to 3.2 person ha-1. This analysis indicates notable regional difference in waters population carrying capacity. In southeastern coastal China and Yangtze River drainage areas where inland waters are widely distributed and aquaculture is developed, the population carrying capacity is higher; however, in northwest China where water resource are deficient and the distribution is relatively small, the waters population carrying capacity is low. The waters ecosystem population carrying capacity of China in 2030 was predicted and results indicate strong potential for increasing waters population carrying capacity.展开更多
Determining the carrying capacity of ecological resources is the key to finding contradictions between human activities and the environment,as well as the links between economic growth,environmental protection and soc...Determining the carrying capacity of ecological resources is the key to finding contradictions between human activities and the environment,as well as the links between economic growth,environmental protection and social development.In recent years,the carrying capacity of the ecological environment has been extensively studied at home and abroad.Through extensive literature research and analysis,this paper discusses the current status and main problems of recent research on the carrying capacity of the ecological environment in China.For example,two of the main problems are that:1)the concepts and connotations are not clear enough,and 2)the research content is not systematic enough.This is followed by a summary of the evaluation index system and main calculation methods.Finally,according to the research status and development trends at home and abroad,the possible direction for the development of this research field in the future is proposed.展开更多
Water resources carrying capacity(WRCC) is an important index for assessing the coordinated development relationship between population and water resources. The quantitative evaluation of WRCC can provide an important...Water resources carrying capacity(WRCC) is an important index for assessing the coordinated development relationship between population and water resources. The quantitative evaluation of WRCC can provide an important basis for water resource regulation and sustainable economic and social development. Based on the statistical data of cities and counties in the Great Dunhuang Region(GDR), and taking counties as the basic units,this study quantitatively analyzed the WRCC and carrying status of the GDR under different water inflow conditions and policy constraints from 2010 to 2017. The study revealed three main trends.(1) From 2010 to 2017, the WRCC of the GDR increased year by year, from 343700, 315900 and 291100 people to 458700, 415400 and 375600people in normal, dry and extremely dry years, respectively.(2) Under policy constraints, the WRCC of the GDR increased year by year from 309400 people in 2010 to 412400 people in 2017. Based on future estimates, the WRCC of the GDR are expected to be 326600 people in 2020 and 341200 people in 2030.(3) From 2010 to 2017,the water resources carrying index of the GDR was decreasing, and it decreased from 1.05, 1.14 and 1.24 to 0.80,0.88 and 0.97 in normal, dry and extremely dry years, respectively. The carrying status changed from critical overload to balanced. Although the WRCC and the carrying status of the GDR had significantly improved by 2017, the overall upper limit of the carrying capacity is not high. Therefore, efforts should be made to improve the utilization efficiency of water resources in order to maintain the sustainable utilization of water resources in the GDR.展开更多
Transportation planning is a critical component for creating an orderly,intensive,and sustainable pattern of land development.By comprehensively considering the potential and suitability of transport construction,a co...Transportation planning is a critical component for creating an orderly,intensive,and sustainable pattern of land development.By comprehensively considering the potential and suitability of transport construction,a comprehensive method combining resources and environmental carrying capacity(RECC)and land development suitability(LDS)was developed by using techniques of GIS,analytic hierarchy process(AHP)and threedimensional magic cube.Taking Aba prefecture in Sichuan Province of Southwest China as a case study,LDS for transportation was analyzed from three aspects,including overall planning layout,different transport modes,and transportation projects.The results showed that the transport planning scales of most counties in Aba were suitable,and the order of LDS of different transport modes was railway>highway=superhighway>tourism track,which already included 42 new transportation projects.We found that two counties(Maoxian County and Jiuzhaigou County)should improve the ecological protection level of transportation,in which the railway network construction should be encouraged,and some transportation projects with low LDS should be postponed or constructed harmlessly.We suggest the combination of RECC and LDS for transportation could enhance the territorial space optimization and sustainable transport construction.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40971101)Major Project of 11th Five-Year Scientific and Technological Support Plan of China (No. 2006BAJ14B03)
文摘Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this region. According to their influencing factors and reciprocity mechanism, using system dynamics approaches, this paper built a SD model for measuring the carrying capacity of resources and environment of the city clusters in the central China, and through setting different development models, the comprehensive measurement analysis on the carrying capacity was carried out. The results show that the model of promoting socio-economic development under the protection of resources and environment is the optimal model for promoting the harmony development of resources, environment, society and economy in the city clusters. According to this model, the optimum population scale of the city clusters in 2020 is 42.80×106 persons, and the moderate economic development scale is 22.055×1012 yuan (RMB). In 1996-2020, the carrying capacity of resources and environment in the city clusters took on obvious phase-change characteristics. During the studied period, it is basically at the initial development stage, and will come through the development process from slow development to speedup development.
文摘The authors once made a preliminary research on population carrying capacity of the land in the Economic Area of Zhujiang Delta (EAZD for short) in 1995, and reckoned that the ultimate population in this region will be 23 550 thousand by year of 2000. While the population in being in EAZD was 22.62 million in 1999.This accords with the prefigured result in the rough from the point of view of development. According to the data of plow land resources from the 2000 Statistical Yearbook of EAZD and the study on the population-foodstuff-plow land relationship, this paper calculates the productive potential of plow land and the population carrying capacity of land by year of 2010, and puts forward the countermeasures for improving the population carrying capacity of land in this region.
基金supported by the Specific Project of National Key Research and Development Program of China (Grants No.2016YFC0503506)the Strategy Priority Research Program of Chinese Academy of Sciences (Grants No. XDA20010103)
文摘This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.
基金the Program of the Geological Survey of China (DD20160328)the National Science Foundation of China (41702386).
文摘Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict development in a region.In this paper,based on a systematic review of China's geological environment,groundwater resources,mineral resources,other geological resources and the environmental carrying capacity research status,the relationship between the natural resource environmental system and the socio-economic system is studied.Then a "coordination theory of resources and environmental carrying"is proposed.Next,on the basis of an evaluation experiment performed at different scales and for different types of regions,the technical methods for an evaluation of the geological resources and environmental carrying capacity at the regional (inter-provincial)and provincial scales in China are established for the first time.This paper presents a standardized method based on technical ideas, evaluation methods,and index systems for geological resource and environmental carrying capacity evaluation.Finally,an evaluation of the groundwater resource carrying capacity in China is used as an example for the demonstration of the groundwater resource background and use of state evaluation methods.
基金Supported by National Natural Science Foundation of China(41171449)National Natural Science Foundation of China(41371536)Key Deployment Project of the Chinese Academy of Sciences(KZZD-EW-06-01)
文摘Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range.
基金Natural Science Foundation of Ningxia(2022AAC03093)Ningxia Higher Education First-class Discipline Construction Project(Hydraulic Engineering Discipline)(NXYLXK2021A03)Ningxia 2018 Key R&D Program(2018BEG03008).
文摘[Objectives]To make safety evaluation of water environment carrying capacity of five cities in Ningxia based on ecological footprint of water resources.[Methods]With the help of the grey relational model,15 indicators were selected from the natural,economic,and social aspects,and the most influential factors in the three fields were selected.Based on the concept of ecological priority,the water resources carrying capacity of the five cities in Ningxia from 2010 to 2019 was calculated with the help of the water resources ecological footprint model.Then,the indicators of the water resources ecological footprint model were coupled with the existing indicators to establish a comprehensive evaluation indicator system.Finally,the changes of the water environment carrying capacity of the five cities in Ningxia were analyzed with the help of the principal component analysis(PCA).[Results]The ecological pressure of water resources and the ecological deficit of water resources in the five cities were relatively large.Specifically,Yinchuan City had the most obvious deficit of water resources but good carrying capacity;Zhongwei City had a large ecological deficit of water resources,poor carrying capacity,and the largest ecological pressure index of water resources;Guyuan City had low water resources ecological deficit,water resources ecological carrying capacity and water resources ecological pressure index.[Conclusions]Through the analysis of the coupling indicator system,it can be seen that the water environment carrying capacity of the five cities is in an upward trend,indicating that the water environment in each region tends to become better.
基金The research and demonstration of key technologies and methods of eco-planning in urban construction,the 11th Five-year Plan of National Science and Technology Infrastructure Program,MOST,2007-2011(No.2007BAC28B02)
文摘Based on such principles as sustainable development and ecological cycle, this paper evaluates the water resources carrying capacity(WCC) of Changchun-Jilin region using a population-economy-water resources correlation evaluation model built on the basis of WCC evaluation method as elaborated in the methodology of Functional Zoning of Population Development. Results show that the annual WCC of Changchun-Jilin region is able to support the population there, as a basic balance is struck between population and water resources. The incorporation of WCC into overall urban planning is one of the building blocks for sustainable city development with an advisable size.
基金The National Key Research and Development Program of China(2016YFC0503500)National Science and Technology Major Project(Z2016C01G01)
文摘As a concept to describe development restrictions,resources and environment carrying capacity(RECC)research has developed over more than 100 years since it was first proposed at the beginning of the 20th century.It is now regarded as a significant factor in evaluating the level of cooperation between regional population,resources,and environment;and it is currently used as an effective and operational tool to guide regional sustainable development.This article first reviews the origin of RECC and its early headway.It then reviews the historical development of RECC from single factors,such as land resources carrying capacity,water resources carrying capacity and environmental carrying capacity(environmental capacity),to more comprehensive research,such as comprehensive evaluation,emergy analysis,and ecological footprint analysis.In general,it appears that comprehensive research will become increasingly important in RECC research.However,there are several deficiencies in the current state of comprehensive research.Firstly,comprehensive RECC research lacks a common measurement standard,though some scholars have attempted to create one.Secondly,the RECC evaluation of open systems and dynamic studies should be strengthened.Thirdly,more attention should be paid to standardization,digitalization,and systematization to promote the applicability of RECC research to national practical demands.
文摘With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resource and environment carrying capacity provides a means of assessing regional development potential by measuring regional sustainable development in terms of economy,population and resources&environment.This study develops a conceptual framework for resource and environment carrying capacity estimation to support the co-development planning of industries,population and resources&environment.First,the framework constructs an index system for evaluating importance of industry or influence based on the role of industry played in the local socio-economic system.Then,the framework computes the quantitative relations through the importance of local industry,population size and resource utilization and environment effects,and subsequently estimates the resource and environment carrying capacity of the study area.With a particular attention to its land resources,water resources and environment,the Tibet case study shows that:the non-ferrous metal mining,tourism,liquor and refined tea industries play a pillar role in the Tibet’s socio-economic system;under each industrial structure,land resource carrying capacity is the weakest,and water resources carrying capacity is the strongest;to focus on tourism will improve local resource and environment carrying capacity.The research results provide a solid guide for Tibet government’s co-actions in industrial restructuring,ecological protection,and the pursuit of economic development.This study will contribute to bridge the gap between theoretical research and practical applications of resource and environment carrying capacity,and help local governments plan the regional“socio-ecological”sustainable development.
基金"The 13th Five Year Plan"Regional Strategy Research Based on Resource and Environment Carrying Capacity and Innovation-driven.Major consulting projects of Scientific and Technical Strategy Consulting Institute,Chinese Academy of Sciences(Y02015005)
文摘Research on the relationship between national resource constraint-region types and environmental carrying capacity is essential for the continued development of Chinese industrialization and urbanization.Thus,utilizing a series of key indexes including the per-capita potential of available land resources,the per-capita potential of available water resources,the degree of environmental stress,and the degree of ecological restriction,a step-by-step,integrated measuring method is presented here to understand the constrained carrying elements of water and land resources as well as environment and ecology.Spatial differences are analyzed and area types classified at the county level across China.Results reveal that:(1)Almost 90%of China is strongly constrained by both resources and the environment,while nearly 50%of national territory is strongly constrained by two elements,especially in areas of intensive population and industry to the east of the Helan-Longmen Mountain line;(2)Densely populated areas of eastern and central China,as well as on the Tibetan Plateau,are strongly constrained by a shortage of land resources,while North China,the northwest,northeast,the Sichuan basin,and some southern cities are experiencing strong constraints because of water shortages.In contrast,the North China plain,the Yangtze River delta,northern Jiangsu,Sichuan province,Chongqing municipality,Guizhou and Guangxi provinces,the northeast plain,and the northern Loess Plateau are constrained by high levels of environmental stress.Areas of China that are strongly ecologically constrained tend to be concentrated to the southwest of the Tianshan-Dabie Mountain line,as well as in the northeast on the Loess Plateau,in the Alashan of Inner Mongolia,in northeast China,and in the northern Jiangsu coastal area;(3)Constraints on national resources and environmental carrying capacity are diverse and cross-cut China,meanwhile,multi-element spatial distribution does reveal a degree of relative centralization.With the exception of the Tibetan Plateau which is resources-ecological constraint,other areas subject to cross constraints are mainly concentrated to the east of the Helan-Longmen Mountain line.
基金Projects of Strategic S&T Plan of IGSNRR(No.2012ZD007)projects of China geological survey(No.12120114006401)
文摘The study of waters ecosystem and their population carrying capacity demonstrates the role of these ecosystems in economic and social development and provides a theoretical basis for the management and allocation of aquatic ecosystems. In this study, the concept of waters ecosystem population carrying capacity was defined and developmental trends in the population carrying capacity of waters ecosystem in China were evaluated. Results show that waters ecosystem population carrying capacity in China increased from 0.176×109 person year-1 in 2000 to 0.255 × 109 person year-1 in 2010; the population carrying capacity of the standard sea remained at 0.2-0.3 person ha 1; and the standard inland waters population carrying capacity increased from 1.8 to 3.2 person ha-1. This analysis indicates notable regional difference in waters population carrying capacity. In southeastern coastal China and Yangtze River drainage areas where inland waters are widely distributed and aquaculture is developed, the population carrying capacity is higher; however, in northwest China where water resource are deficient and the distribution is relatively small, the waters population carrying capacity is low. The waters ecosystem population carrying capacity of China in 2030 was predicted and results indicate strong potential for increasing waters population carrying capacity.
基金The National Key Research and Development Project(2018YFD0800201)
文摘Determining the carrying capacity of ecological resources is the key to finding contradictions between human activities and the environment,as well as the links between economic growth,environmental protection and social development.In recent years,the carrying capacity of the ecological environment has been extensively studied at home and abroad.Through extensive literature research and analysis,this paper discusses the current status and main problems of recent research on the carrying capacity of the ecological environment in China.For example,two of the main problems are that:1)the concepts and connotations are not clear enough,and 2)the research content is not systematic enough.This is followed by a summary of the evaluation index system and main calculation methods.Finally,according to the research status and development trends at home and abroad,the possible direction for the development of this research field in the future is proposed.
基金The Second Tibetan Plateau Scientific Expedition and Research (2019QZKK1006)。
文摘Water resources carrying capacity(WRCC) is an important index for assessing the coordinated development relationship between population and water resources. The quantitative evaluation of WRCC can provide an important basis for water resource regulation and sustainable economic and social development. Based on the statistical data of cities and counties in the Great Dunhuang Region(GDR), and taking counties as the basic units,this study quantitatively analyzed the WRCC and carrying status of the GDR under different water inflow conditions and policy constraints from 2010 to 2017. The study revealed three main trends.(1) From 2010 to 2017, the WRCC of the GDR increased year by year, from 343700, 315900 and 291100 people to 458700, 415400 and 375600people in normal, dry and extremely dry years, respectively.(2) Under policy constraints, the WRCC of the GDR increased year by year from 309400 people in 2010 to 412400 people in 2017. Based on future estimates, the WRCC of the GDR are expected to be 326600 people in 2020 and 341200 people in 2030.(3) From 2010 to 2017,the water resources carrying index of the GDR was decreasing, and it decreased from 1.05, 1.14 and 1.24 to 0.80,0.88 and 0.97 in normal, dry and extremely dry years, respectively. The carrying status changed from critical overload to balanced. Although the WRCC and the carrying status of the GDR had significantly improved by 2017, the overall upper limit of the carrying capacity is not high. Therefore, efforts should be made to improve the utilization efficiency of water resources in order to maintain the sustainable utilization of water resources in the GDR.
基金funded by Key Scientific Research Project of the Ministry of Transport(No.2020-MS4113)Scientific and Technological Development Project,Transport Planning and Research Institute of the Ministry of Transport(No.092117-434)Science and Technology Project of Henan Provincial Department of Transport(No.2020G-2-15)。
文摘Transportation planning is a critical component for creating an orderly,intensive,and sustainable pattern of land development.By comprehensively considering the potential and suitability of transport construction,a comprehensive method combining resources and environmental carrying capacity(RECC)and land development suitability(LDS)was developed by using techniques of GIS,analytic hierarchy process(AHP)and threedimensional magic cube.Taking Aba prefecture in Sichuan Province of Southwest China as a case study,LDS for transportation was analyzed from three aspects,including overall planning layout,different transport modes,and transportation projects.The results showed that the transport planning scales of most counties in Aba were suitable,and the order of LDS of different transport modes was railway>highway=superhighway>tourism track,which already included 42 new transportation projects.We found that two counties(Maoxian County and Jiuzhaigou County)should improve the ecological protection level of transportation,in which the railway network construction should be encouraged,and some transportation projects with low LDS should be postponed or constructed harmlessly.We suggest the combination of RECC and LDS for transportation could enhance the territorial space optimization and sustainable transport construction.