Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg...Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.展开更多
This paper intends to develop suitable methods to provide likely scenarios in order to support decision making for slow dynamic processes such as the underlying of agribusiness. A new method to analyze the short- and ...This paper intends to develop suitable methods to provide likely scenarios in order to support decision making for slow dynamic processes such as the underlying of agribusiness. A new method to analyze the short- and long-term time series forecast and to model the behavior of the underlying process using nonlinear artificial neural networks (ANN) is presented. The algorithm can effectively forecast the time-series data by stochastic analysis (Monte Carlo) of its future behavior using fractional Gaussian noise (fGn). The algorithm was used to forecast country risk time series for several countries, both for short term that is 30 days ahead and long term 350 days ahead scenarios.展开更多
This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constru...This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constructing forecast time series models in the future. The main components(trend, periodical, and irregular) of the KIUB(DORIS) and KIT3, TASH, MADK, and MTAL(GNSS) international stations coordinate time series were investigated. It was shown that seasonal nonlinear trends occurred both in the height(U) component of all stations and the east(E) component of high mountainous stations such as MTAL and MADK. The seasonal periodical portion of the time series determined from the additive model has a complicated pattern for all sites and can be explained as both hydrological signals in the region and improvement of observational quality. Amplitudes of the best-fitting sinusoids in the North component ranged between 1.73 and 8.76 mm; the East component ranged between 0.82 and 11.92 mm; and the Up component ranged between 3.11 and 40.81 mm. Regression analysis of the irregular portion of the height component of the two techniques at the Kitab station using tropospheric parameters(pressure and temperature) was confirmed as only 57% of the stochastic portion of the time series.展开更多
Based on the data of MSW generation in Beijing from 2004 to 2012,an ARIMA model of time series analysis was established. By contrast of the modeling results of different yearly data,the forecast period was identified ...Based on the data of MSW generation in Beijing from 2004 to 2012,an ARIMA model of time series analysis was established. By contrast of the modeling results of different yearly data,the forecast period was identified to be 10 years. The yearly production of MSW from 2015 to 2025 was forecasted by using SPSS 16. 0 software. Result shows that the forecasting effect of ARIMA( 1,0,1) model is relatively good,and it can be applied to prediction of MSW production in Beijing. In the next 10 years,the amount of MSW produced in Beijing is increasing,but the growth rate is not large. Is expected to 2025,the production of MSW will reach more than 9 million tons. Taking into account the MSW return,it is inferred that the production of MSW in Beijing in 2025 will be close to 10 million tons. In order to reduce the pressure of subsequent waste disposal facilities in Beijing,the government can increase the intensity of the recycling of waste materials.展开更多
Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and...Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data.展开更多
Based on the improvement in establishing the relations of data,this study proposes a new fuzzy time series model.In this model,the suitable number of fuzzy sets and their specific elements are determined automatically...Based on the improvement in establishing the relations of data,this study proposes a new fuzzy time series model.In this model,the suitable number of fuzzy sets and their specific elements are determined automatically.In addition,using the percentage variations of series between consecutive periods of time,we build the fuzzy function.Incorporating all these improvements,we have a new fuzzy time series model that is better than many existing ones through the well-known data sets.The calculation of the proposed model can be performed conveniently and efficiently by a MATLAB procedure.The proposed model is also used in forecasting for an urgent problem in Vietnam.This application also shows the advantages of the proposed model and illustrates its effectiveness in practical application.展开更多
Streamflow forecasting in drylands is challenging.Data are scarce,catchments are highly humanmodified and streamflow exhibits strong nonlinear responses to rainfall.The goal of this study was to evaluate the monthly a...Streamflow forecasting in drylands is challenging.Data are scarce,catchments are highly humanmodified and streamflow exhibits strong nonlinear responses to rainfall.The goal of this study was to evaluate the monthly and seasonal streamflow forecasting in two large catchments in the Jaguaribe River Basin in the Brazilian semi-arid area.We adopted four different lead times:one month ahead for monthly scale and two,three and four months ahead for seasonal scale.The gaps of the historic streamflow series were filled up by using rainfall-runoff modelling.Then,time series model techniques were applied,i.e.,the locally constant,the locally averaged,the k-nearest-neighbours algorithm(k-NN)and the autoregressive(AR)model.The criterion of reliability of the validation results is that the forecast is more skillful than streamflow climatology.Our approach outperformed the streamflow climatology for all monthly streamflows.On average,the former was 25%better than the latter.The seasonal streamflow forecasting(SSF)was also reliable(on average,20%better than the climatology),failing slightly only for the high flow season of one catchment(6%worse than the climatology).Considering an uncertainty envelope(probabilistic forecasting),which was considerably narrower than the data standard deviation,the streamflow forecasting performance increased by about 50%at both scales.The forecast errors were mainly driven by the streamflow intra-seasonality at monthly scale,while they were by the forecast lead time at seasonal scale.The best-fit and worst-fit time series model were the k-NN approach and the AR model,respectively.The rainfall-runoff modelling outputs played an important role in improving streamflow forecasting for one streamgauge that showed 35%of data gaps.The developed data-driven approach is mathematical and computationally very simple,demands few resources to accomplish its operational implementation and is applicable to other dryland watersheds.Our findings may be part of drought forecasting systems and potentially help allocating water months in advance.Moreover,the developed strategy can serve as a baseline for more complex streamflow forecast systems.展开更多
In the latter part of the 20th century, continued improvements in living standards, health behaviors, and medical care reduced mortality and produced amazing advances in life expectancy. These trends, followed by all ...In the latter part of the 20th century, continued improvements in living standards, health behaviors, and medical care reduced mortality and produced amazing advances in life expectancy. These trends, followed by all industrial nations, decidedly affect the financial position of an insurance company, interested in the construction of updated life tables. The approach to this problem is faced in this paper by using the Lee-Carter methodology. In particular, in the present work, we are interested in modeling and forecasting mortality and life expectancy on a period basis through the use of a stochastic forecasting method which uses time-series models to make long-term forecasts.展开更多
Developing a reliable weather forecasting model is a complicated task, as it requires heavy IT resources as well as heavy investments beyond the financial capabilities of most countries. In Lebanon, the prediction mod...Developing a reliable weather forecasting model is a complicated task, as it requires heavy IT resources as well as heavy investments beyond the financial capabilities of most countries. In Lebanon, the prediction model used by the civil aviation weather service at Rafic Hariri International Airport in Beirut (BRHIA) is the ARPEGE model, (0.5) developed by the weather service in France. Unfortunately, forecasts provided by ARPEGE have been erroneous and biased by several factors such as the chaotic character of the physical modeling equations of some atmospheric phenomena (advection, convection, etc.) and the nature of the Lebanese topography. In this paper, we proposed the time series method ARIMA (Auto Regressive Integrated Moving Average) to forecast the minimum daily temperature and compared its result with ARPEGE. As a result, ARIMA method shows better mean accuracy (91%) over the numerical model ARPEGE (68%), for the prediction of five days in January 2017. Moreover, back to five months ago, in order to validate the accuracy of the proposed model, a simulation has been applied on the first five days of August 2016. Results have shown that the time series ARIMA method has offered better mean accuracy (98%) over the numerical model ARPEGE (89%) for the prediction of five days of August 2016. This paper discusses a multiprocessing approach applied to ARIMA in order to enhance the efficiency of ARIMA in terms of complexity and resources.展开更多
Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect so...Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect some problems in power systems reliability particularly if the system is deeply penetrated by wind farms. Therefore, wind power forecasting issue become and is still an important scope that will help in ED (economic dispatch), UC (unit commitment) purposes to get more reliable and economic systems. This paper introduces short term wind power forecasting model, based on ARIMA (autoregressive integrated moving average) which will be applied to hourly wind data from Zaafarana 5 project in Egypt. The proposed model successfully outperforms the persistence model with significant improvement up to 6 h ahead.展开更多
文摘Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.
文摘This paper intends to develop suitable methods to provide likely scenarios in order to support decision making for slow dynamic processes such as the underlying of agribusiness. A new method to analyze the short- and long-term time series forecast and to model the behavior of the underlying process using nonlinear artificial neural networks (ANN) is presented. The algorithm can effectively forecast the time-series data by stochastic analysis (Monte Carlo) of its future behavior using fractional Gaussian noise (fGn). The algorithm was used to forecast country risk time series for several countries, both for short term that is 30 days ahead and long term 350 days ahead scenarios.
基金funded by the research-applied project of the Astronomical Institute of Uzbekistan (FA-A5-F014)
文摘This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constructing forecast time series models in the future. The main components(trend, periodical, and irregular) of the KIUB(DORIS) and KIT3, TASH, MADK, and MTAL(GNSS) international stations coordinate time series were investigated. It was shown that seasonal nonlinear trends occurred both in the height(U) component of all stations and the east(E) component of high mountainous stations such as MTAL and MADK. The seasonal periodical portion of the time series determined from the additive model has a complicated pattern for all sites and can be explained as both hydrological signals in the region and improvement of observational quality. Amplitudes of the best-fitting sinusoids in the North component ranged between 1.73 and 8.76 mm; the East component ranged between 0.82 and 11.92 mm; and the Up component ranged between 3.11 and 40.81 mm. Regression analysis of the irregular portion of the height component of the two techniques at the Kitab station using tropospheric parameters(pressure and temperature) was confirmed as only 57% of the stochastic portion of the time series.
基金Supported by the Project of Beijing Municipal Commission of City Management(SC1708A)
文摘Based on the data of MSW generation in Beijing from 2004 to 2012,an ARIMA model of time series analysis was established. By contrast of the modeling results of different yearly data,the forecast period was identified to be 10 years. The yearly production of MSW from 2015 to 2025 was forecasted by using SPSS 16. 0 software. Result shows that the forecasting effect of ARIMA( 1,0,1) model is relatively good,and it can be applied to prediction of MSW production in Beijing. In the next 10 years,the amount of MSW produced in Beijing is increasing,but the growth rate is not large. Is expected to 2025,the production of MSW will reach more than 9 million tons. Taking into account the MSW return,it is inferred that the production of MSW in Beijing in 2025 will be close to 10 million tons. In order to reduce the pressure of subsequent waste disposal facilities in Beijing,the government can increase the intensity of the recycling of waste materials.
基金financially supported by the National Sci-Tech Support Plan of China(Grant No.2015BAD14B05)
文摘Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data.
文摘Based on the improvement in establishing the relations of data,this study proposes a new fuzzy time series model.In this model,the suitable number of fuzzy sets and their specific elements are determined automatically.In addition,using the percentage variations of series between consecutive periods of time,we build the fuzzy function.Incorporating all these improvements,we have a new fuzzy time series model that is better than many existing ones through the well-known data sets.The calculation of the proposed model can be performed conveniently and efficiently by a MATLAB procedure.The proposed model is also used in forecasting for an urgent problem in Vietnam.This application also shows the advantages of the proposed model and illustrates its effectiveness in practical application.
基金The first author thanks the Brazilian National Council for Scientific and Technological Development for the Post-Doc scholarship(155814/2018-4).
文摘Streamflow forecasting in drylands is challenging.Data are scarce,catchments are highly humanmodified and streamflow exhibits strong nonlinear responses to rainfall.The goal of this study was to evaluate the monthly and seasonal streamflow forecasting in two large catchments in the Jaguaribe River Basin in the Brazilian semi-arid area.We adopted four different lead times:one month ahead for monthly scale and two,three and four months ahead for seasonal scale.The gaps of the historic streamflow series were filled up by using rainfall-runoff modelling.Then,time series model techniques were applied,i.e.,the locally constant,the locally averaged,the k-nearest-neighbours algorithm(k-NN)and the autoregressive(AR)model.The criterion of reliability of the validation results is that the forecast is more skillful than streamflow climatology.Our approach outperformed the streamflow climatology for all monthly streamflows.On average,the former was 25%better than the latter.The seasonal streamflow forecasting(SSF)was also reliable(on average,20%better than the climatology),failing slightly only for the high flow season of one catchment(6%worse than the climatology).Considering an uncertainty envelope(probabilistic forecasting),which was considerably narrower than the data standard deviation,the streamflow forecasting performance increased by about 50%at both scales.The forecast errors were mainly driven by the streamflow intra-seasonality at monthly scale,while they were by the forecast lead time at seasonal scale.The best-fit and worst-fit time series model were the k-NN approach and the AR model,respectively.The rainfall-runoff modelling outputs played an important role in improving streamflow forecasting for one streamgauge that showed 35%of data gaps.The developed data-driven approach is mathematical and computationally very simple,demands few resources to accomplish its operational implementation and is applicable to other dryland watersheds.Our findings may be part of drought forecasting systems and potentially help allocating water months in advance.Moreover,the developed strategy can serve as a baseline for more complex streamflow forecast systems.
文摘In the latter part of the 20th century, continued improvements in living standards, health behaviors, and medical care reduced mortality and produced amazing advances in life expectancy. These trends, followed by all industrial nations, decidedly affect the financial position of an insurance company, interested in the construction of updated life tables. The approach to this problem is faced in this paper by using the Lee-Carter methodology. In particular, in the present work, we are interested in modeling and forecasting mortality and life expectancy on a period basis through the use of a stochastic forecasting method which uses time-series models to make long-term forecasts.
文摘Developing a reliable weather forecasting model is a complicated task, as it requires heavy IT resources as well as heavy investments beyond the financial capabilities of most countries. In Lebanon, the prediction model used by the civil aviation weather service at Rafic Hariri International Airport in Beirut (BRHIA) is the ARPEGE model, (0.5) developed by the weather service in France. Unfortunately, forecasts provided by ARPEGE have been erroneous and biased by several factors such as the chaotic character of the physical modeling equations of some atmospheric phenomena (advection, convection, etc.) and the nature of the Lebanese topography. In this paper, we proposed the time series method ARIMA (Auto Regressive Integrated Moving Average) to forecast the minimum daily temperature and compared its result with ARPEGE. As a result, ARIMA method shows better mean accuracy (91%) over the numerical model ARPEGE (68%), for the prediction of five days in January 2017. Moreover, back to five months ago, in order to validate the accuracy of the proposed model, a simulation has been applied on the first five days of August 2016. Results have shown that the time series ARIMA method has offered better mean accuracy (98%) over the numerical model ARPEGE (89%) for the prediction of five days of August 2016. This paper discusses a multiprocessing approach applied to ARIMA in order to enhance the efficiency of ARIMA in terms of complexity and resources.
文摘Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect some problems in power systems reliability particularly if the system is deeply penetrated by wind farms. Therefore, wind power forecasting issue become and is still an important scope that will help in ED (economic dispatch), UC (unit commitment) purposes to get more reliable and economic systems. This paper introduces short term wind power forecasting model, based on ARIMA (autoregressive integrated moving average) which will be applied to hourly wind data from Zaafarana 5 project in Egypt. The proposed model successfully outperforms the persistence model with significant improvement up to 6 h ahead.