In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultima...In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultimately bounded. The conditions of the population- extinction solution of the investigated system are obtained. The permanent condition of the investigated system is also obtained. Finally, numerical analysis is inserted to illustrate the results. Our results indicate that the environmental pollution will reduce biological diversity of the natural world. Our results also provide reliable tactic basis for the practical biological resource management.展开更多
基金Acknowledgments The work of the first author was supported by National Natural Science Foundation of China (No. 11361014) and the project of high level creative talents in Guizhou Province (No. 20164035). This research was supported by National Natural Science Foundation of China (Nos. 11361014, 10961008), the Science Technology Foundation of Guizhou Education Department (No. 2008038), and the Science Technology Foundation of Guizhou (No. 2010J2130).
文摘In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultimately bounded. The conditions of the population- extinction solution of the investigated system are obtained. The permanent condition of the investigated system is also obtained. Finally, numerical analysis is inserted to illustrate the results. Our results indicate that the environmental pollution will reduce biological diversity of the natural world. Our results also provide reliable tactic basis for the practical biological resource management.