The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-po...The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.展开更多
An 800 kV electric power substation can have more than one hundred of porcelain multicone type insulators supporting busbar structures.Two or more sections in series,having middle and end fittings,compose these insula...An 800 kV electric power substation can have more than one hundred of porcelain multicone type insulators supporting busbar structures.Two or more sections in series,having middle and end fittings,compose these insulators.Ageing process can cause degradation of the cement used in this type of insulator and this fact can affect its dielectric performance under heavy rain.This paper presents results of an investigation based on power frequency high voltage tests performed on 800 kV porcelain multicone type insulators,removed from service after having operated for more than 20 years,as well a non-used one that had been stored on site for long time.The insulators were tested in different arrangements:each section at a time and the two sections assembled in series,as actually used insulator columns.The tests were carried out under artificial rain ranging from 1 mm/min to 5 mm/min.The results have confirmed a reduction of up to 30% in the insulator power frequency flashover voltage under 5 mm/min rain conditions and gave important information to the utility about radial cracks that were observed in many insulators and about the discharge mechanisms along the insulators under rain.展开更多
In this paper the relatienship between mi-crostructwtie and strength of alnminiiim-totighed porcelain insu-lator has been investigated .the microstructural characteristic of the porcelain insulator has been put forwar...In this paper the relatienship between mi-crostructwtie and strength of alnminiiim-totighed porcelain insu-lator has been investigated .the microstructural characteristic of the porcelain insulator has been put forward. The results shoiu that the main factors that lead to the strength decreasement of aluminium toughened porcelain insulator are pore, fracture,' coarse alumina grain, aluminium agglomerate and bearing fer-ric matter. The technological factors have also been analysed and appropriate measures have been taken.展开更多
In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultr...In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.展开更多
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae...As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.展开更多
In recent years,more than 50%of the cities in the inland area of our country have suffered from moderate pollution.It can affect the distribution of electric field along the surface of insulator and the pollution char...In recent years,more than 50%of the cities in the inland area of our country have suffered from moderate pollution.It can affect the distribution of electric field along the surface of insulator and the pollution characteristics of its surface area,even endanger the safe operation of transmission lines.This paper takes the XSP-160 porcelain three umbrella insulator under the action of 0–±30 kV DC voltage as the research object,and establishes the physical model of the insulator;uses COMSOL software to simulate the electric field of the insulator.The comparison with the results of the wind tunnel test of North China Electric Power University verifies the rationality of the simulation method.In view of the medium pollution environment which often occurs in the inland area,the force of the polluted particles deposited on the insulator under 110 kV DC voltage was analyzed.The distribution characteristics of the electric field along the surface in the clean and three kinds of pollution environment(light,medium and heavy)were simulated and compared.The results showed that:1)In the moderate pollution environment,the influence of fluid drag force on the movement of polluted particles is greater at the initial stage(0.28–0.33 s);at the late stage(after 0.33 s),the influence of the electric field force begins to increase,and gradually plays a major role in the process of fouling.2)In the three different polluted environments,the potential along the surface of each umbrella skirt of the insulator increases non-linearly with the increasing of the pollution concentration,and there are apparent potential inflection points near b and l.3)The pollution particle concentration has the most obvious influence on the electric field along the low-voltage umbrella skirt,whose potential distortion rate can be up to 220 times in the heavy polluted environment.展开更多
A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter ...A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.展开更多
We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal pr...We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).展开更多
基金National Natural Science Foundation of China(No.51867013)。
文摘The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.
文摘An 800 kV electric power substation can have more than one hundred of porcelain multicone type insulators supporting busbar structures.Two or more sections in series,having middle and end fittings,compose these insulators.Ageing process can cause degradation of the cement used in this type of insulator and this fact can affect its dielectric performance under heavy rain.This paper presents results of an investigation based on power frequency high voltage tests performed on 800 kV porcelain multicone type insulators,removed from service after having operated for more than 20 years,as well a non-used one that had been stored on site for long time.The insulators were tested in different arrangements:each section at a time and the two sections assembled in series,as actually used insulator columns.The tests were carried out under artificial rain ranging from 1 mm/min to 5 mm/min.The results have confirmed a reduction of up to 30% in the insulator power frequency flashover voltage under 5 mm/min rain conditions and gave important information to the utility about radial cracks that were observed in many insulators and about the discharge mechanisms along the insulators under rain.
文摘In this paper the relatienship between mi-crostructwtie and strength of alnminiiim-totighed porcelain insu-lator has been investigated .the microstructural characteristic of the porcelain insulator has been put forward. The results shoiu that the main factors that lead to the strength decreasement of aluminium toughened porcelain insulator are pore, fracture,' coarse alumina grain, aluminium agglomerate and bearing fer-ric matter. The technological factors have also been analysed and appropriate measures have been taken.
基金financial supports from the National Key R&D Program of China (2016YFB0601301 and 2018YFB0605904)The National Natural Science Foundation of China (51672256)Henan Science and Technology Research Program (162102210343)
文摘In order to improve the mechanical properties of SiO_2 aerogel-glass fiber composites, effects of different solvents(cyclohexane, n-hexane, ethanol, acetone) and different dispersing modes(planetary ball milling, ultrasonic dispersion and mechanical stirring) and dispersing duration(10-40 min) on the dispersion of chopped alkali-free glass fiber bundles were studied to determine the best dispersion process. On this basis, the materials were batched according to the mass fraction of SiO_2 aerogel powder to chopped alkali free glass fiber bundles of 90:10, and a certain amount of zinc oxide light-screening agent and phenolic resin binder were added. SiO_2 aerogel glass fiber composite specimens were prepared by direct adding chopped alkali free glass fiber bundles and pre-dispersed chopped alkali free glass fiber bundles, respectively. The cold crushing strength and the thermal conductivity at different surface temperatures(300, 400, 500 and 600 ℃, respectively)of the specimens were measured. The results show that:(1) the optimum dispersion process of chopped alkali-free glass fiber bundles is using ethanol as solvent and mechanical stirring for 30 min;(2) pre-dispersion of chopped alkali-free glass fiber bundles has little effect on the thermal conductivity of SiO_2 aerogel-glass fiber composites but can improve the cold crushing strength.
基金supported by the Program of Applied Basic Research Program of Shanxi Province,China (No.202103021223055)the Shanxi Scholarship Council of Chinathe Key R&D program of Shanxi Province,China (No.202102030201006)。
文摘As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
基金Science and Technology Project of State Grid Corporation(GY7111053)[www.sgcc.com.cn].
文摘In recent years,more than 50%of the cities in the inland area of our country have suffered from moderate pollution.It can affect the distribution of electric field along the surface of insulator and the pollution characteristics of its surface area,even endanger the safe operation of transmission lines.This paper takes the XSP-160 porcelain three umbrella insulator under the action of 0–±30 kV DC voltage as the research object,and establishes the physical model of the insulator;uses COMSOL software to simulate the electric field of the insulator.The comparison with the results of the wind tunnel test of North China Electric Power University verifies the rationality of the simulation method.In view of the medium pollution environment which often occurs in the inland area,the force of the polluted particles deposited on the insulator under 110 kV DC voltage was analyzed.The distribution characteristics of the electric field along the surface in the clean and three kinds of pollution environment(light,medium and heavy)were simulated and compared.The results showed that:1)In the moderate pollution environment,the influence of fluid drag force on the movement of polluted particles is greater at the initial stage(0.28–0.33 s);at the late stage(after 0.33 s),the influence of the electric field force begins to increase,and gradually plays a major role in the process of fouling.2)In the three different polluted environments,the potential along the surface of each umbrella skirt of the insulator increases non-linearly with the increasing of the pollution concentration,and there are apparent potential inflection points near b and l.3)The pollution particle concentration has the most obvious influence on the electric field along the low-voltage umbrella skirt,whose potential distortion rate can be up to 220 times in the heavy polluted environment.
文摘A hollow glass microsphere(HGM)/TiO2 composite hollow sphere was successfully prepared via a simple precipitation method.The TiO2 coating layers grew on the surface of the HGMs that range from 20 to 50μm in diameter as nanoparticles with the formation of the SiO Ti bonds.The growth mechanism accounting for the formation of the TiO2 nanolayers was proposed.The morphology,composition,thermal insulation properties,and visible-near infrared(VIS-NIR)refl ectance of the HGMs/TiO2 composite hollow spheres were characterized.The VIS-NIR reflectance of the HGMs/TiO2 composite hollow spheres increased by more than 30%compared to raw HGMs.The thermal conductivity of the particles is 0.058 W/(m K).The result indicates that the VIS-NIR reflectance of the composite hollow spheres is strongly influenced by the coating of TiO2.The composite hollow spheres were used as the main functional filler to prepare the organic-inorganic composite coatings.The glass substrates coated by the organic-inorganic coatings had lower thermal conductivity and higher near infrared reflectivity.Therefore,the HGMs/TiO2 composite hollow spheres can reflect most of the solar energy and effectively keep out the heat as a thermal insulation coating for energy-saving constructions.
文摘We want to conclude on the interest of the “crimping” process used to produce the glass wool and to make a comparison for anisotropic factor obtained from structural property (air permeability) as well as thermal property (thermal conductivity and diffusivity). The main structural (densities, porosity, specific surface, air permeability) and the thermal (conductivity, diffusivity, heat capacity) characteristics of this glass wool are presented. Thermal results are determined by using several methods (Hot disc (HD), Heat Flow Meter (HFM) and Guarded Hot Plate).