The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,...The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,I/Cl and δ37Cl in pore water were applied here in tracing gas hydrate occurrence,chemical evolution of pore fluids and water/rock interactions in low temperature sediment environments.The samples were collected from Sites HD255 PC and HD309 PC in the Dongsha area in 2004.At Site HD255 PC,we found the elevated Br/Cl,I/Cl and decreased SO_4/Cl at the depth of 4–5 m,suggestive of a laterally migrated fluid probably generated from the gas hydrate occurrence.The range of δ37Cl is –0.54‰ to +0.96‰,and positive δ^(37)Cl at 4–5 m interval should be related with different diffusion rates between ^(35)Cl and ^(37)Cl.At Site HD309 PC,a laterally migrated fluid was also found at the depth of 3–4 m,with the Br/Cl two times to that of the seawater and decreased I/Cl,indicating the fluid has no relationship with the gas hydrate.In this site,the chlorine isotopic composition varies from –0.7‰ to+1.9‰.Extra high Br/Cl might relate with the deep generated fluid.At higher temperature and pressure,the Br/Cl of the fluid is elevated during the hydrous silicate formation,while positive δ37Cl is also associated with the same mechanism.展开更多
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc...Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,展开更多
Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,hig...Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,high-pressure mercury intrusion and low-temperature nitrogen adsorption experiments were used to qualitatively and quantitatively characterize the pore structure of black shale from the third member of the Xiamaling Formation in the Yanshan area.The pore heterogeneity was studied using fractal theory,and the controlling factors of pore development and heterogeneity were evaluated in combination with geochemical parameters,mineral composition,and geological evolution history.The results show that the pore structure of the reservoir was intricate and complicated.Moreover,various types of micro-nano scale pores such as dissolution pores,intergranular pores,interlayer pores,and micro-cracks are well developed in member 3 of the Xiamaling Formation.The average porosity was found to be 6.30%,and the mean value of the average pore size was 4.78 nm.Micropores and transition pores provided most of the storage space.Pore development was significantly affected by the region and was mainly related to the total organic carbon content,vitrinite reflectance and mineral composition.The fractal dimension,which characterizes the heterogeneity,is 2.66 on average,indicating that the pore structure is highly heterogeneous.Fractal dimension is positively correlated with maturity and clay mineral content,while it is negatively correlated with brittle mineral content and average pore size.These results indicate that pore heterogeneity is closely related to thermal history and material composition.Combined with the geological background of this area,it was found that the pore heterogeneity was mainly controlled by the Jurassic magmatism.The more intense the magma intrusion,the stronger the pore heterogeneity.The pore structure and its heterogeneity characteristics present today are a general reflection of the superimposed geological processes of sedimentary-diagenetic-late transformation.The influence of magmatic intrusion on the reservoir is the main geological factor that should be considered for detailed evaluation of the Xiamaling Formation shale gas reservoir in the Yanshan area.展开更多
Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecul...Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.展开更多
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb...With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.展开更多
生物质碳材料的孔道类型和孔径大小制约着材料有效的活性位点数量,影响材料的性能。孔道分类又是孔径分析的前提条件,因此,建立孔道分类的方法非常有意义。随着生物质碳材料的深入研究,研究者对其孔道分析的要求逐渐提高。由于实际的吸...生物质碳材料的孔道类型和孔径大小制约着材料有效的活性位点数量,影响材料的性能。孔道分类又是孔径分析的前提条件,因此,建立孔道分类的方法非常有意义。随着生物质碳材料的深入研究,研究者对其孔道分析的要求逐渐提高。由于实际的吸脱附等温线具有不规则性,难以匹配IUPAC规范中的吸脱附等温线,所以,用实际的吸脱附等温线与IUPAC规范中的吸脱附等温线进行匹配对生物质碳材料的孔道进行分类准确度不能得到保证。使用自制生物质碳材料,运用物理吸附仪对其进行表征,采用BET方程(Brunauer-Emmett-Teller)、T-plot方法(Thickness-plot)、DFT方法(Non-local Density Functional Theory)、BJH(Barrett Joyner And Halenda)方法对其孔道进行分析。研究表明,采用孔隙率和比表面积占有率对其进行孔道分类,可以准确地定义出微孔生物质碳材料、介孔生物质碳材料和微介孔生物质碳材料,从而建立了孔隙率和比表面积占有率的孔道分类新方法。用标准样品对孔隙率和比表面积占有率的孔道分类新方法进行论证,结果一致。方法准确可靠、实用性高。展开更多
In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complic...In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.展开更多
基金The National Natural Science Foundation of China under contract Nos 41373002,40903001 and 40903002
文摘The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,I/Cl and δ37Cl in pore water were applied here in tracing gas hydrate occurrence,chemical evolution of pore fluids and water/rock interactions in low temperature sediment environments.The samples were collected from Sites HD255 PC and HD309 PC in the Dongsha area in 2004.At Site HD255 PC,we found the elevated Br/Cl,I/Cl and decreased SO_4/Cl at the depth of 4–5 m,suggestive of a laterally migrated fluid probably generated from the gas hydrate occurrence.The range of δ37Cl is –0.54‰ to +0.96‰,and positive δ^(37)Cl at 4–5 m interval should be related with different diffusion rates between ^(35)Cl and ^(37)Cl.At Site HD309 PC,a laterally migrated fluid was also found at the depth of 3–4 m,with the Br/Cl two times to that of the seawater and decreased I/Cl,indicating the fluid has no relationship with the gas hydrate.In this site,the chlorine isotopic composition varies from –0.7‰ to+1.9‰.Extra high Br/Cl might relate with the deep generated fluid.At higher temperature and pressure,the Br/Cl of the fluid is elevated during the hydrous silicate formation,while positive δ37Cl is also associated with the same mechanism.
基金supported by the National Natural Science Foundation of China(grant No.41572141)
文摘Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,
基金supported by the Natural Science Foundation of Jiangsu Province (BK20181362)the National Natural Science Foundation of China (No. 41772141)+3 种基金the Scientific Research Foundation of Hebei Province (No. 2014995001)the National Science and Technology Major Project (2017ZX05035004)the Fundamental Research Funds for the Central Universities (2017CXNL03)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,high-pressure mercury intrusion and low-temperature nitrogen adsorption experiments were used to qualitatively and quantitatively characterize the pore structure of black shale from the third member of the Xiamaling Formation in the Yanshan area.The pore heterogeneity was studied using fractal theory,and the controlling factors of pore development and heterogeneity were evaluated in combination with geochemical parameters,mineral composition,and geological evolution history.The results show that the pore structure of the reservoir was intricate and complicated.Moreover,various types of micro-nano scale pores such as dissolution pores,intergranular pores,interlayer pores,and micro-cracks are well developed in member 3 of the Xiamaling Formation.The average porosity was found to be 6.30%,and the mean value of the average pore size was 4.78 nm.Micropores and transition pores provided most of the storage space.Pore development was significantly affected by the region and was mainly related to the total organic carbon content,vitrinite reflectance and mineral composition.The fractal dimension,which characterizes the heterogeneity,is 2.66 on average,indicating that the pore structure is highly heterogeneous.Fractal dimension is positively correlated with maturity and clay mineral content,while it is negatively correlated with brittle mineral content and average pore size.These results indicate that pore heterogeneity is closely related to thermal history and material composition.Combined with the geological background of this area,it was found that the pore heterogeneity was mainly controlled by the Jurassic magmatism.The more intense the magma intrusion,the stronger the pore heterogeneity.The pore structure and its heterogeneity characteristics present today are a general reflection of the superimposed geological processes of sedimentary-diagenetic-late transformation.The influence of magmatic intrusion on the reservoir is the main geological factor that should be considered for detailed evaluation of the Xiamaling Formation shale gas reservoir in the Yanshan area.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)the National Natural Science Foundation of China(41772150)
文摘Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.
基金supported by the Natural Science Foundation of China (grant No. 41772130)
文摘With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.
文摘生物质碳材料的孔道类型和孔径大小制约着材料有效的活性位点数量,影响材料的性能。孔道分类又是孔径分析的前提条件,因此,建立孔道分类的方法非常有意义。随着生物质碳材料的深入研究,研究者对其孔道分析的要求逐渐提高。由于实际的吸脱附等温线具有不规则性,难以匹配IUPAC规范中的吸脱附等温线,所以,用实际的吸脱附等温线与IUPAC规范中的吸脱附等温线进行匹配对生物质碳材料的孔道进行分类准确度不能得到保证。使用自制生物质碳材料,运用物理吸附仪对其进行表征,采用BET方程(Brunauer-Emmett-Teller)、T-plot方法(Thickness-plot)、DFT方法(Non-local Density Functional Theory)、BJH(Barrett Joyner And Halenda)方法对其孔道进行分析。研究表明,采用孔隙率和比表面积占有率对其进行孔道分类,可以准确地定义出微孔生物质碳材料、介孔生物质碳材料和微介孔生物质碳材料,从而建立了孔隙率和比表面积占有率的孔道分类新方法。用标准样品对孔隙率和比表面积占有率的孔道分类新方法进行论证,结果一致。方法准确可靠、实用性高。
文摘In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.