期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ZIF-derived holey electrode with enhanced mass transfer and N-rich catalytic sites for high-power and long-life vanadium flow batteries 被引量:2
1
作者 Yongbin Liu Lihong Yu +2 位作者 Xin Liu Le Liu Jingyu Xi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期545-553,I0015,共10页
Electrode materials with good redox kinetics,excellent mass transfer characteristics and ultra-high stability play a crucial role in reducing the life-cycle cost and prolonging the maintenance-free time of the vanadiu... Electrode materials with good redox kinetics,excellent mass transfer characteristics and ultra-high stability play a crucial role in reducing the life-cycle cost and prolonging the maintenance-free time of the vanadium flow batteries(VFB).Herein,a nitrogen-doped porous graphite felt electrode(N-PGF)is proposed by growing ZIF-67 nanoparticles on carbon fibers and then calcinating and acid etching.The multi-scale structure of“carbon fiber gap(electrolyte flow),micro/nano pore(active species diffusion)and Nitrogen active center(reaction site)”in N-PGF electrode effectively increases the catalytic sites and promotes mass transfer characteristics.Reasonable electrode design makes the battery show excellent rate performance and ultra-high cycling stability.The peak power density of the battery reaches 1006 mW cm^(-2).During 1000 cycles at 150 mA cm^(-2),the average discharge capacity and average discharge energy of N-PGF increase substantially by 11.6%and 23.4%compared with the benchmark thermal activated graphite felt,respectively.More excitingly,after ultra-long term(5000 cycles)operation at an ultra-high current density(300 mA cm^(-2)),N-PGF exhibits an unprecedented energy efficiency retention(99.79%)and electrochemical performance stability. 展开更多
关键词 Vanadium flow battery Multi-scale pore electrode Graphite felt NITROGEN-DOPING Cycling stability
下载PDF
Engineering two-dimensional pores in freestanding TiO_2/graphene gel film for high performance lithium ion battery
2
作者 Xiaojun Yan Yuanyuan Wang +6 位作者 Congcong Liu Min Guo Jingying Tao Jing Cao Dongju Fu Liyi Dai Xiaowei Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期176-182,共7页
As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solut... As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solution process to prepare freestanding TiO_2/graphene hydrogel electrode with tunable density and porous structures. By incorporating room temperature ionic liquids(RTILs), even upon drying, the non-volatile RTILs that remained in the gel film would preserve the efficient ion transport channels and prevent the electrode from closely stacking, to develop dense yet porous structures. As a result, the dense TiO_2/graphene gel film as an electrode for lithium ion battery displayed a good gravimetric electrochemical performance and more importantly a high volumetric performance. 展开更多
关键词 TiO2/graphene gel electrode pore engineering Ions transport channels Lithium ion battery Volumetric performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部