Effects of microwave heating on the pore fractal properties of blast furnace sludge (BFS) and relative mechanism were studied. The results show that the morphology features of iron bearing sinter and coke particles,...Effects of microwave heating on the pore fractal properties of blast furnace sludge (BFS) and relative mechanism were studied. The results show that the morphology features of iron bearing sinter and coke particles, which are the main constituents of the BFS, were remarkably changed by microwave heating. The porosity, surface roughness and specific surface area of modified particle surface all increased obviously. Combining with fractal meth-od called Sierpinski model, the fractal dimensions of sinter, coke and others increased from 2.35, 2.24 and 2.58 to 2.65, 2.44 and 2.61 respectively, after modification by microwave heating. The results predicted that the reaction mechanism of microwave heating for BFS is related to two aspects. Different mineral phases existed in BFS particles incline to dissociate each other due to their different microwave absorbability~ some recombination or reconstruction of matters or structure leads to structure defects, which have great influences on the surface morphology characteris-tics and chemical properties. The research indicated that fractal dimension can be used as an effective factor for quan-titative analysis of the pore changes in morphology of the sludge. Furthermore, it is helpful for separation and ex- traction of valuable constituent from BFS.展开更多
Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mi...Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mineralogical composition,Nitrogen gas adsorption(N2 adsorption)and Nuclear Magnetic Resonance(NMR)measurements and fractal analysis.Results show that the TOC content of the shale samples is relatively high,with an average value of 2.44wt%,and the thermal evolution is during the mature-over mature stage.The NMR T2 spectrum can be used to characterize the fullsized pore structure characteristics of shale.By combining N2 adsorption pore structure parameters and NMR T2 spectrums,the surface relaxivity of samples are calculated to be between 1.7877 um/s and 5.2272 um/s.On this basis,the T2 spectrums are converted to full-sized pore volume and surface area distribution curves.The statistics show that the pore volume is mainly provided by mesopore,followed by micropore,and the average percentages are 65.04%and 30.83%respectively;the surface area is mainly provided by micropore,followed by mesopore,and the average percentages are 60.8004%and 39.137%respectively;macropore contributes little to pore volume and surface area.The pore structure characteristics of shale have no relationship with TOC,but strong relationships with clay minerals content.NMR fractal dimensions Dmicro and Dmeso have strong positive relationships with the N2 adsorption fractal dimensions D1 and D2 respectively,indicating that Dmicro can be used to characterize the fractal characteristics of pore surface,and Dmeso can be used to characterize the fractal characteristics of pore structure.The shale surface relaxivity is controlled by multiple factors.The increasing of clay mineral content,pore surface area,pore surface fractal dimension and the decreasing of average pore size,will all lead to the decreasing of shale surface relaxivity.展开更多
A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds...A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.展开更多
Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geom...Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geometry, in combination with computer image anaysis, is used to express the irregularity of pore size distribution in nonwovens, and the effect of fiber properties on fractal dimension of pore size distribution is discussed by using simulated images which are composed of nonlinear staple fibers. The results show that the fiber properties, such as crimp, diameter, angular distribution, and especially the number of fibers prominently influence the pore structure.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51204004)University Science Research Project of Anhui Province of China(KJ2013Z017)
文摘Effects of microwave heating on the pore fractal properties of blast furnace sludge (BFS) and relative mechanism were studied. The results show that the morphology features of iron bearing sinter and coke particles, which are the main constituents of the BFS, were remarkably changed by microwave heating. The porosity, surface roughness and specific surface area of modified particle surface all increased obviously. Combining with fractal meth-od called Sierpinski model, the fractal dimensions of sinter, coke and others increased from 2.35, 2.24 and 2.58 to 2.65, 2.44 and 2.61 respectively, after modification by microwave heating. The results predicted that the reaction mechanism of microwave heating for BFS is related to two aspects. Different mineral phases existed in BFS particles incline to dissociate each other due to their different microwave absorbability~ some recombination or reconstruction of matters or structure leads to structure defects, which have great influences on the surface morphology characteris-tics and chemical properties. The research indicated that fractal dimension can be used as an effective factor for quan-titative analysis of the pore changes in morphology of the sludge. Furthermore, it is helpful for separation and ex- traction of valuable constituent from BFS.
基金support from the National Science and Technology Major Project of China (Grant No. 2016ZX05034)
文摘Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mineralogical composition,Nitrogen gas adsorption(N2 adsorption)and Nuclear Magnetic Resonance(NMR)measurements and fractal analysis.Results show that the TOC content of the shale samples is relatively high,with an average value of 2.44wt%,and the thermal evolution is during the mature-over mature stage.The NMR T2 spectrum can be used to characterize the fullsized pore structure characteristics of shale.By combining N2 adsorption pore structure parameters and NMR T2 spectrums,the surface relaxivity of samples are calculated to be between 1.7877 um/s and 5.2272 um/s.On this basis,the T2 spectrums are converted to full-sized pore volume and surface area distribution curves.The statistics show that the pore volume is mainly provided by mesopore,followed by micropore,and the average percentages are 65.04%and 30.83%respectively;the surface area is mainly provided by micropore,followed by mesopore,and the average percentages are 60.8004%and 39.137%respectively;macropore contributes little to pore volume and surface area.The pore structure characteristics of shale have no relationship with TOC,but strong relationships with clay minerals content.NMR fractal dimensions Dmicro and Dmeso have strong positive relationships with the N2 adsorption fractal dimensions D1 and D2 respectively,indicating that Dmicro can be used to characterize the fractal characteristics of pore surface,and Dmeso can be used to characterize the fractal characteristics of pore structure.The shale surface relaxivity is controlled by multiple factors.The increasing of clay mineral content,pore surface area,pore surface fractal dimension and the decreasing of average pore size,will all lead to the decreasing of shale surface relaxivity.
基金Sponsored by Young Fund Programs of Explosives&Propellants ( HYZ08010202-4)
文摘A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.
文摘Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geometry, in combination with computer image anaysis, is used to express the irregularity of pore size distribution in nonwovens, and the effect of fiber properties on fractal dimension of pore size distribution is discussed by using simulated images which are composed of nonlinear staple fibers. The results show that the fiber properties, such as crimp, diameter, angular distribution, and especially the number of fibers prominently influence the pore structure.