In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, ...In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, LECO TOC measurement, gas adsorption and field-emission scanning electron microscope. The results show that samples from the Bakken Formation have a higher TOC than those from the Longmaxi Formation. The Longmaxi Formation has higher micropore volume and larger micropore surface area and exhibited a smaller average distribution of microsize pores compared to the Bakken Formation. Both formations have similar meso-macropore volume. The Longmaxi Formation has a much larger meso-macropore surface area, which is corresponding to a smaller average meso-macropore size. CO_2 adsorption data processing shows that the pore size of the majority of the micropores in the samples from the Longmaxi Formation is less than 1 nm, while the pore size of the most of the micropores in the samples from the Bakken Formation is larger than 1 nm. Both formations have the same number of pore clusters in the 2–20 nm range, but the Bakken Formation has two additional pore size groups with mean pore size diameters larger than 20 nm. Multifractal analysis of pore size distribution curves that was derived from gas adsorption indicates that the samples from the Longmaxi Formation have more significant micropore heterogeneity and less meso-macropore heterogeneity. Abundant micropores as well as mesomacropores exist in the organic matter in the Longmaxi Formation, while the organic matter of the Bakken Formation hosts mainly micropores.展开更多
The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated fro...The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated from the pressure drop induced during foam propagation in porous media. The results clearly showed that the modified Si02 nanoparticlestabilized foam exhibited high stability, and the differential pressure increased in porous media by as much as three times.The addition of SiO_2 nanoparticles to the foaming dispersions further mitigated the adverse effect of oil toward the foam pore plugging ability. Consequently, the oil recovery increased in the presence of nanoparticles by approximately 15%during the enhanced oil recovery experiment. The study suggested that the addition of surface-modified silica nanoparticles to the surfactant solution could considerably improve the conventional foam stability and pore plugging performance in porous media.展开更多
The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestru...The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes.展开更多
Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanc...Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.展开更多
In order to analyze the stress and deformation of different permeability of residual oil film in the complex pore, which are affected by the viscous-elasticity of the fluid, the hydrodynamic displacement mechanism is ...In order to analyze the stress and deformation of different permeability of residual oil film in the complex pore, which are affected by the viscous-elasticity of the fluid, the hydrodynamic displacement mechanism is explored from the stand-point of hydrodynamics, that is, the residual oil film displaced by alternating injection of different concentrations of the polymer solution, viscous-elastic fluid flow equation is established in the complex pore by choosing continuity equation, motion equation and the upper convected Maxwell constitutive equation. The flow field is computed by using the method of numerical analysis. Not only the stress and deformation of residual oil film on the different permeability of micro pores, but also the analysis of the flooding mechanism of alternating injection of different concentrations of the polymer solution is got. The results show that the larger the viscous-elasticity of polymer solution is, the bigger the normal deviatoric stress acting on the residual oil film is;the distribution of normal deviatoric stress has the abrupt change. The stronger the viscous-elasticity of the polymer solution is, the bigger the horizontal stress difference acting on the residual oil film is and the more obvious the deformation is;the high-concentration polymer solution is suitable for high-permeability micro pores. Low-concentration polymer solution is suitable for medium and low-permeability micro pores. Alternating injection of polymer solution can improve Volumetric Sweep Efficiency and increase the deformation of residual oil film, which is conducive to enhancing oil recovery.展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reserv...On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reservoir formation were established. Simultaneously, a new method for the classification of shale oil flow units based on logging data was established. A new classification scheme for shale oil reservoirs was proposed according to the inflection points and fractal features of mercury injection curves: microscopic pore-throats(less than 25 nm), small pore-throats(25-100 nm), medium pore-throats(100-1 000 nm) and big pore-throats(greater than 1 000 nm). Correspondingly, the shale reservoirs are divided into four classes, I, II, III and IV according to the number of microscopic pores they contain, and the average pore-throat radii corresponding to the dividing points are 150 nm, 70 nm and 10 nm respectively. By using the correlation between permeability and pore-throat radius, the permeability thresholds for the reservoir classification are determined at 1.00× 10^(-3) μm^2, 0.40×10^(-3) μm^2 and 0.05×10^(-3) μm^2 respectively. By using the exponential relationship between porosity and permeability of the same hydrodynamic flow unit, a new method was set up to evaluate the reservoir flow belt index and to identify shale oil flow units with logging data. The application in the Dongying sag shows that the standard proposed is suitable for grading evaluation of shale oil reservoirs.展开更多
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r...To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.展开更多
In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equa...In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equation is established in the micro pore by choosing the continuity equation, motion equation and the upper-convected Maxwell constitutive equation, the flow field is computed by using numerical analysis, the forces that driving fluid acting on the residual oil in micro pore are got, and the influence of flooding conditions, pore width and viscous-elasticity of driving fluid on force is compared and analyzed. The results show that: the more viscous-elasticity of driving fluid increases, the greater the normal deviatoric stress acting on the residual oil increases;using constant pressure gradient flooding, the lager the pore width is, the greater normal deviatoric stress acting on the residual oil will be.展开更多
基金the joint support from China Scholarship Council(201406450029)National Natural Science Foundation of China(Grant No.41504108)China Postdoctoral Science Foundation(Grant No.2015M582568)
文摘In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, LECO TOC measurement, gas adsorption and field-emission scanning electron microscope. The results show that samples from the Bakken Formation have a higher TOC than those from the Longmaxi Formation. The Longmaxi Formation has higher micropore volume and larger micropore surface area and exhibited a smaller average distribution of microsize pores compared to the Bakken Formation. Both formations have similar meso-macropore volume. The Longmaxi Formation has a much larger meso-macropore surface area, which is corresponding to a smaller average meso-macropore size. CO_2 adsorption data processing shows that the pore size of the majority of the micropores in the samples from the Longmaxi Formation is less than 1 nm, while the pore size of the most of the micropores in the samples from the Bakken Formation is larger than 1 nm. Both formations have the same number of pore clusters in the 2–20 nm range, but the Bakken Formation has two additional pore size groups with mean pore size diameters larger than 20 nm. Multifractal analysis of pore size distribution curves that was derived from gas adsorption indicates that the samples from the Longmaxi Formation have more significant micropore heterogeneity and less meso-macropore heterogeneity. Abundant micropores as well as mesomacropores exist in the organic matter in the Longmaxi Formation, while the organic matter of the Bakken Formation hosts mainly micropores.
基金Ministry of Higher Education (Vot No. Q.J130000.2542.08H61)Universiti Teknologi (UTM) Malaysia for supporting this research
文摘The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated from the pressure drop induced during foam propagation in porous media. The results clearly showed that the modified Si02 nanoparticlestabilized foam exhibited high stability, and the differential pressure increased in porous media by as much as three times.The addition of SiO_2 nanoparticles to the foaming dispersions further mitigated the adverse effect of oil toward the foam pore plugging ability. Consequently, the oil recovery increased in the presence of nanoparticles by approximately 15%during the enhanced oil recovery experiment. The study suggested that the addition of surface-modified silica nanoparticles to the surfactant solution could considerably improve the conventional foam stability and pore plugging performance in porous media.
文摘The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-005)the National Natural Science Foundation of China(51674271)
文摘Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.
文摘In order to analyze the stress and deformation of different permeability of residual oil film in the complex pore, which are affected by the viscous-elasticity of the fluid, the hydrodynamic displacement mechanism is explored from the stand-point of hydrodynamics, that is, the residual oil film displaced by alternating injection of different concentrations of the polymer solution, viscous-elastic fluid flow equation is established in the complex pore by choosing continuity equation, motion equation and the upper convected Maxwell constitutive equation. The flow field is computed by using the method of numerical analysis. Not only the stress and deformation of residual oil film on the different permeability of micro pores, but also the analysis of the flooding mechanism of alternating injection of different concentrations of the polymer solution is got. The results show that the larger the viscous-elasticity of polymer solution is, the bigger the normal deviatoric stress acting on the residual oil film is;the distribution of normal deviatoric stress has the abrupt change. The stronger the viscous-elasticity of the polymer solution is, the bigger the horizontal stress difference acting on the residual oil film is and the more obvious the deformation is;the high-concentration polymer solution is suitable for high-permeability micro pores. Low-concentration polymer solution is suitable for medium and low-permeability micro pores. Alternating injection of polymer solution can improve Volumetric Sweep Efficiency and increase the deformation of residual oil film, which is conducive to enhancing oil recovery.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金Supported by the National Natural Science Foundation of China(41330313,41402122)China National Science and Technology Major Project(2017ZX05049004-003)+1 种基金Research Project Funded by the SINOPEC Corp.(P15028)Fundamental Research Funds for the Central Universities(15CX05046A,15CX07004A,17CX02074)
文摘On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reservoir formation were established. Simultaneously, a new method for the classification of shale oil flow units based on logging data was established. A new classification scheme for shale oil reservoirs was proposed according to the inflection points and fractal features of mercury injection curves: microscopic pore-throats(less than 25 nm), small pore-throats(25-100 nm), medium pore-throats(100-1 000 nm) and big pore-throats(greater than 1 000 nm). Correspondingly, the shale reservoirs are divided into four classes, I, II, III and IV according to the number of microscopic pores they contain, and the average pore-throat radii corresponding to the dividing points are 150 nm, 70 nm and 10 nm respectively. By using the correlation between permeability and pore-throat radius, the permeability thresholds for the reservoir classification are determined at 1.00× 10^(-3) μm^2, 0.40×10^(-3) μm^2 and 0.05×10^(-3) μm^2 respectively. By using the exponential relationship between porosity and permeability of the same hydrodynamic flow unit, a new method was set up to evaluate the reservoir flow belt index and to identify shale oil flow units with logging data. The application in the Dongying sag shows that the standard proposed is suitable for grading evaluation of shale oil reservoirs.
基金Supported by China National Science and Technology Major Project(2016ZX05025-003-010) and (2016ZX05010-005).
文摘To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations.
文摘In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equation is established in the micro pore by choosing the continuity equation, motion equation and the upper-convected Maxwell constitutive equation, the flow field is computed by using numerical analysis, the forces that driving fluid acting on the residual oil in micro pore are got, and the influence of flooding conditions, pore width and viscous-elasticity of driving fluid on force is compared and analyzed. The results show that: the more viscous-elasticity of driving fluid increases, the greater the normal deviatoric stress acting on the residual oil increases;using constant pressure gradient flooding, the lager the pore width is, the greater normal deviatoric stress acting on the residual oil will be.