The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established bas...The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.展开更多
Pore volume compressibility is an essential parameter in reservoir studies,as it plays a major role in recovery mechanisms.Over the past decades,many attempts have been made to establish a link between the pore compre...Pore volume compressibility is an essential parameter in reservoir studies,as it plays a major role in recovery mechanisms.Over the past decades,many attempts have been made to establish a link between the pore compressibility and the porosity and other mechanical properties of the rock.Some scholars introduced analytical correlations between pore compressibility and rock mechanical properties,while others developed empirical formulas for estimating pore compressibility based on a porosity calculated by comparing nonlinear models to laboratory data.In this study,pore volume compressibility is measured on 55 carbonate samples and then applied to derive an empirical relationship between pore compressibility and porosity at each stress step,which is useful for predicting pore compressibility based on initial porosity.We take the net stress effect into account and derive an empirical correlation based on net effective stress and initial porosity to predict pore compressibility.In the end,we compare the measured pore compressibility with that predicted by the derived correlation and other non-leaner models,which indicates that the newly proposed non-linear equation outperforms those available in literature。展开更多
基金Supported by the National Natural Science Foundation of China(51474224)The Shenzhen Peacock Plan(KQTD2017033114582189)The Shenzhen Science and Technology Innovation Committee(JCYJ20170817152743178)
文摘The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.
文摘Pore volume compressibility is an essential parameter in reservoir studies,as it plays a major role in recovery mechanisms.Over the past decades,many attempts have been made to establish a link between the pore compressibility and the porosity and other mechanical properties of the rock.Some scholars introduced analytical correlations between pore compressibility and rock mechanical properties,while others developed empirical formulas for estimating pore compressibility based on a porosity calculated by comparing nonlinear models to laboratory data.In this study,pore volume compressibility is measured on 55 carbonate samples and then applied to derive an empirical relationship between pore compressibility and porosity at each stress step,which is useful for predicting pore compressibility based on initial porosity.We take the net stress effect into account and derive an empirical correlation based on net effective stress and initial porosity to predict pore compressibility.In the end,we compare the measured pore compressibility with that predicted by the derived correlation and other non-leaner models,which indicates that the newly proposed non-linear equation outperforms those available in literature。