期刊文献+
共找到3,795篇文章
< 1 2 190 >
每页显示 20 50 100
The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone
1
作者 Weizhen Jiang Guizhi Wang +4 位作者 Qing Li Manab Kumar Dutta Shilei Jin Guiyuan Dai Yi Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期61-76,共16页
Mangrove and salt-marsh wetlands are important coastal carbon sinks.In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon,we carried out continuous observati... Mangrove and salt-marsh wetlands are important coastal carbon sinks.In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon,we carried out continuous observations in a mangrove-Spartina alterniflora ecozone in the Zhangjiang River Estuary,China.The carbon fluxes via pore water exchange were estimated using^(222)Rn and^(228)Ra as tracers to be(2.15±0.63)mol/(m^(2)∙d)for dissolved inorganic carbon(DIC)and(-0.008±0.07)mol/(m^(2)∙d)for dissolved organic carbon(DOC)in the wet season and(3.02±0.65)mol/(m^(2)∙d)for DIC and(-0.15±0.007)mol/(m^(2)∙d)for DOC in the dry season in the mangrove-dominated creek(M-creek),while(2.52±0.82)mol/(m^(2)∙d)for DIC and(0.02±0.09)mol/(m^(2)∙d)for DOC in the dry season in the S.alterniflora-dominated creek(SA-creek).The negative value means that pore water was a sink of DOC in the creek.The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%-55%of the net carbon fixed by mangrove vegetation and was 3-4 times as much as the soil carbon accretion in the mangroves.The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79%of the carbon outwelling from the SA-creek,implying effective fixation of carbon by the wetland ecosystem.Moreover,it resulted in 54%in the dry season,75%in the wet season of the carbon dioxide released from the M-creek to the atmosphere,and 84%of the release from the SA-creek.Therefore,quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands. 展开更多
关键词 MANGROVE SALT-MARSH carbon dioxide carbon accretion carbon outwelling pore water exchange
下载PDF
Experiment and analysis of the formation,expansion and dissipation of gasbag in fine sediments based on pore water pressure survey
2
作者 Shiyun Lei Xiujun Guo Haoru Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期91-100,共10页
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor... Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments. 展开更多
关键词 pore water pressure monitoring technology excess pore water pressure gasbag cracks gas migration
下载PDF
Wave-induced pore water pressure in marine cohesive soils 被引量:10
3
作者 CHEN Yunmin LAI Xianghua +2 位作者 YE Yincan HUANG Bo JI Meixiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第4期138-145,共8页
Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore... Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a retum period of 100 a in the Hangzhou Bay, if the wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place. 展开更多
关键词 wave-induced loading cohesion soils LIQUEFACTION pore water pressure buildup Hangzhou Bay
下载PDF
Influence of pore water pressure on upper bound analysis of collapse shape for square tunnel in Hoek-Brown media 被引量:5
4
作者 黄阜 张道兵 +1 位作者 孙志彬 吴贲 《Journal of Central South University》 SCIE EI CAS 2011年第2期530-535,共6页
To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Bro... To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Brown failure criterion. The work rate of pore water pressure,which was regarded as an external rate of work,was taken into account in the framework of limit analysis. Taking advantages of variational calculation,the objective function with respect to detaching curve was optimized to obtain the effective shape of collapsing block for square tunnel. According to the numerical results,it is found that the varying pore water pressure coefficient only affects the height and width of the collapsing block,whereas the shape of collapsing block remains unchanged. 展开更多
关键词 upper hound theorem square tunnel pore water pressure variational calculation Hoek-Brown media
下载PDF
The numerical study of wave-induced pore water pressure response in highly permeable seabed 被引量:2
5
作者 JIANG Changbo CHENG Yongzhou +1 位作者 CHANG Liuhong XIA Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期46-55,共10页
The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional R... The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes (RANS) equations with a k-s closure, and Forchheimer equations are adopted for flow within the porous media. By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow, a highly efficient coupling between the two flows is implemented. The numerical tests are conducted to study the effects of seabed thickness, porosity, particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response. The results indicate that, as compared with regular wave-induced, solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters. The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed. The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action. 展开更多
关键词 solitary wave regular wave highly permeable SEABED pore water pressure numericalstudy
下载PDF
Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand 被引量:4
6
作者 Yun-kai Ji Chang-ling Liu +4 位作者 Zhun Zhang Qing-guo Meng Le-le Liu Yong-chao Zhang Neng-you Wu 《China Geology》 2022年第2期276-284,共9页
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the... Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples.Results show that the signal intensity of T_(2) distribution isn’t affected by sediment type and pore pressure,but is affected by temperature.The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T_(2) distribution.The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media.The water conversion rate fluctuates during the hydrate formation.The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media.For the fine sand sample,the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate,but causes a large water-sand contact area resulting in a low water conversion ratio(C_(w)=96.2%).The clay can reduce the water conversion rate and ratio,especially montmorillonite(C_(w)=95.8%).The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water. 展开更多
关键词 Porous media Unsaturated sand Methane hydrates Low-field NMR pore water conversion Hydrate formation NGHs exploration trial engineering Oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Relative roles of resuspended particles and pore water in release of contaminants from sediment 被引量:2
7
作者 Hong-wei ZHU Peng-da CHENG Dao-zeng WANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期344-350,共7页
Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff... Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage. 展开更多
关键词 sediment resuspension resuspended particle pore water release of contaminants release flux
下载PDF
Geochemical Characteristics of Heavy Metals in Riparian Sediment Pore Water of Songhua River, Northeast China 被引量:2
8
作者 ZHU Hui YAN Baixing +2 位作者 PAN Xiaofen YANG Yuhong WANG Lixia 《Chinese Geographical Science》 SCIE CSCD 2011年第2期195-203,共9页
This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast Chi... This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants. 展开更多
关键词 heavy metal riparian sediment pore water water pollution Songhua River
下载PDF
Characteristics of Pore Water Pressure of Saturated Silt Under Wave Loading 被引量:1
9
作者 高玉峰 张健 +1 位作者 沈扬 闫俊 《China Ocean Engineering》 SCIE EI 2010年第1期161-172,共12页
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo... The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency. 展开更多
关键词 SILT wave loading pore water pressure vibration frequency cyclic triaxial-torsional coupling shear rotation of principal stress
下载PDF
Experimental Study of Pore Water Pressure and Bed Profile Change Under Regular Breaking Waves 被引量:1
10
作者 程永舟 蒋昌波 +2 位作者 赵利平 潘昀 李青峰 《China Ocean Engineering》 SCIE EI 2012年第3期457-468,共12页
There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy... There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed. 展开更多
关键词 breaking wave pore water pressure sloping sandy seabed flume experiment
下载PDF
Attenuation-type and failure-type curve models on accumulated pore water pressure in saturated normal consolidated clay 被引量:1
11
作者 赵春彦 《Journal of Central South University》 SCIE EI CAS 2012年第7期2047-2053,共7页
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat... Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models. 展开更多
关键词 saturated normal consolidation clay equivalent dynamic stress level accumulated pore water pressure model attenuation-type curve failure-type curve
下载PDF
Br/Cl,I/Cl and chlorine isotopic compositions of pore water in shallow sediments:implications for the fluid sources in the Dongsha area,northern South China Sea 被引量:2
12
作者 LI Yanping JIANG Shaoyong YANG Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第4期31-36,共6页
The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,... The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,I/Cl and δ37Cl in pore water were applied here in tracing gas hydrate occurrence,chemical evolution of pore fluids and water/rock interactions in low temperature sediment environments.The samples were collected from Sites HD255 PC and HD309 PC in the Dongsha area in 2004.At Site HD255 PC,we found the elevated Br/Cl,I/Cl and decreased SO_4/Cl at the depth of 4–5 m,suggestive of a laterally migrated fluid probably generated from the gas hydrate occurrence.The range of δ37Cl is –0.54‰ to +0.96‰,and positive δ^(37)Cl at 4–5 m interval should be related with different diffusion rates between ^(35)Cl and ^(37)Cl.At Site HD309 PC,a laterally migrated fluid was also found at the depth of 3–4 m,with the Br/Cl two times to that of the seawater and decreased I/Cl,indicating the fluid has no relationship with the gas hydrate.In this site,the chlorine isotopic composition varies from –0.7‰ to+1.9‰.Extra high Br/Cl might relate with the deep generated fluid.At higher temperature and pressure,the Br/Cl of the fluid is elevated during the hydrous silicate formation,while positive δ37Cl is also associated with the same mechanism. 展开更多
关键词 halogen chlorine isotope pore water Dongsha area
下载PDF
Stem flow chemistry of Picea glehnii,Abies sachalinensis and Alnus japonica and its effect on the peat pore water chemistry in an ombrogenous mire in Ochiishi,eastern Hokkaido,Japan
13
作者 Tsutomu Iyobe Akira Haraguchi 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期119-128,I0003,共11页
We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ... We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ombrogenous mire.The effect of stemflow on the peat pore water chemistry was clear at the stem base in the peat forest in the mire,and the peat pore water around the stem base of a tree had its own chemical properties specific to each species.P.glehnii showed the highest concentration of salts both in stemflow and peat-pore water,whereas A.japonica showed the lowest concentrations;however,the gradient of the chemical environment from the stem base to outside of the canopy is formed.The peat pore water chemistry under the canopy was mainly controlled by the chemical processes diluted by the abundant peat pore water;the stemflow movement in the high water content of the peat was more slowly because of the flat topography(〈 1o).This would be due to the fact that the chemicals in stemflow would be diluted by the abundant peat pore water.The spatial heterogeneity of chemical environment between microsites within forested peatland would be also contributed indirectly through the control of microorganism activity,and nutrient regeneration mediated the surface water and the stemflow of the dominant canopy trees. 展开更多
关键词 Abies sachalinensis Alnus japonica Picea glehnii peat pore water STEMFLOW chemical properties
下载PDF
Pore Water Pressure Buildup Under Cyclic Rotation of Principal Stress and Stability Evaluation of Seabed Deposit
14
作者 Shen Ruifu , Wang Hongjin , Zhou Jinxing and Zhou Keji Former graduate student of Tsinghua University, now works in Nanjing Hydraulic Research Institute, Nanjing 210029Professor, Tsinghua University, Beijing 100084 Senior Engineer, Tsinghua University, Beijing 100084 《China Ocean Engineering》 SCIE EI 1994年第4期471-482,共12页
The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from t... The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit. 展开更多
关键词 rotation of principal stress direction pore water pressure generalized shear strain residual deformation
下载PDF
Pore Water Pressure Arising during Pile Drilling in Sand
15
作者 Abdrabbo F. Khaled El-Sayed Gaaver 《Journal of Civil Engineering and Architecture》 2011年第4期331-340,共10页
The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the... The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads. 展开更多
关键词 pore water pressure pile drilling IMPERFECTIONS CFA water percolation
下载PDF
An Experimental Study on the Wave-Induced Pore Water Pressure Change and Relative Influencing Factors in the Silty Seabed
16
作者 LI Anlong LUO Xiaoqiao +2 位作者 LIN Lin YE Qing LI Chunyu 《Journal of Ocean University of China》 SCIE CAS 2014年第6期911-916,共6页
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heigh... In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately. 展开更多
关键词 wave action silty seabed pore water pressure development influencing factor
下载PDF
Experimental study on pore water pressure dissipation of mucky soil
17
作者 Xianwei ZHANG Changming WANG Junxia LI Bin WANG 《Global Geology》 2008年第4期251-255,共5页
Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using re... Pore water pressure has an important influence on mechanical properties of soil.The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure.The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading.What is more,the pore water pressure coefficient of mucky soil is less than 1.As the compactness of soil increases and moisture content reduces,the value of B reduces.There is a staggered dissipating in the process of consolidation,in which it is a mutate point when U/P is 80%.It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation. 展开更多
关键词 mucky soil pore water pressure consolidation pressure coefficient of pore pressure
下载PDF
Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels 被引量:4
18
作者 杨小礼 黄阜 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期819-823,共5页
Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the ... Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the shallow tunnels in soft clay, without considering the influences of pore water pressure and dilatancy, numerical results were compared with the previously published solutions. From the comparisons, it is found that the present solutions agree well with the previous solutions. The accuracy of the strength reduction technique was demonstrated through the comparisons. The influence of the pore water pressure was discussed. For the shallow tunnels in dilatant cohesive-frictional soils, the dilatant analysis was carried out. 展开更多
关键词 SHALLOW TUNNEL STRENGTH reduction method DILATANCY pore water pressure
下载PDF
Initial excess pore water pressures induced by tunnelling in soft ground 被引量:1
19
作者 梁荣柱 夏唐代 +2 位作者 林存刚 俞峰 吴世明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4300-4309,共10页
Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects... Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects on the long-term consolidation settlement. A simple and reliable method for predicting the tunnel-induced initial excess pore water pressure calculation in soft clay is proposed. This method is based on the theory of elasticity and SKEMPTON's excess pore water pressure theory. Compared with the previously published field measurements and the finite-element modelling results, it is found that the suggested initial excess pore water pressure theory is in a good agreement with the measurements and the FE results. A series of parametric analyses are also carried out to investigate the influences of different factors on the distribution and magnitude of the initial excess pore water pressure in soft ground. 展开更多
关键词 INITIAL EXCESS pore water PRESSURE geostress relie
下载PDF
Vibration pore water pressure characteristics of saturated fine sand under partially drained condition
20
作者 王炳辉 陈国兴 《Journal of Central South University》 SCIE EI CAS 2008年第S2期209-214,共6页
Vibration pore water pressure characteristics of saturated fine sand under partially drained condition were investigated through stress-controlled cyclic triaxial tests employed varied fine content of samples and load... Vibration pore water pressure characteristics of saturated fine sand under partially drained condition were investigated through stress-controlled cyclic triaxial tests employed varied fine content of samples and loading frequency. In order to simulate the partially drained condition, one-way drainage for sample was implemented when cyclic loading was applied. The results show that the vibration pore water pressure's response leads the axial stress and axial strain responses, and is lagged behind or simultaneous with axial strain-rate's response for all samples in this research. In addition, the satisfactory linear relationship between vibration pore water pressure amplitude and axial strain-rate amplitude is also obtained. It means that the direct cause of vibration pore water pressure generation under partially drained conditions is not the axial stress or axial strain but the axial strain-rate. The lag-phase between pore water pressure and axial strain-rate increases with the increase of the fine content or the loading frequency. 展开更多
关键词 PARTIALLY drained CONDITION loading frequency fine content VIBRATION pore water pressure AXIAL STRAIN-RATE
下载PDF
上一页 1 2 190 下一页 到第
使用帮助 返回顶部