期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration 被引量:15
1
作者 YANG Tao JIANG ShaoYong +5 位作者 GE Lu YANG JingHong WU NengYou ZHANG GuangXue LIU Jian CHEN DaoHua 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期521-529,共9页
The Qiongdongnan Basin is one of the target areas for marine gas hydrate exploration in the northern margin of the South China Sea. In this study, major anion (e.g., SO42 , Cl, Br, I), cation (e.g., Ca, Mg, K, Na), an... The Qiongdongnan Basin is one of the target areas for marine gas hydrate exploration in the northern margin of the South China Sea. In this study, major anion (e.g., SO42 , Cl, Br, I), cation (e.g., Ca, Mg, K, Na), and trace element (e.g., Sr, Ba) con- centrations of pore water samples collected from site HQ-1PC in the Qiongdongnan Basin were analyzed. These geochemical data suggest that the process of AOM (Anaerobic Oxidation of Methane) is dominant in sulfate-reduction zone in this site due to high upwelling iodine flux and strong microbial activities. The iodine-rich fluids, which may carry methane for the gas hydrate formation, pass through the gas hydrate stability zone, mix with brine released during gas hydrate formation, and cause the geochemical anomalies observed at site HQ-1PC. The pore water geochemical characteristics and anomalies in the Qiongdongnan Basin are quite similar to those found in other gas hydrate locations in the Shenhu area in the northern South China Sea, and a genetic link is suggested with the possibility of gas hydrate occurrence in the study area. 展开更多
关键词 pore water GEOCHEMISTRY gas hydrate Qiongdongnan Basin
原文传递
The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone
2
作者 Weizhen Jiang Guizhi Wang +4 位作者 Qing Li Manab Kumar Dutta Shilei Jin Guiyuan Dai Yi Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期61-76,共16页
Mangrove and salt-marsh wetlands are important coastal carbon sinks.In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon,we carried out continuous observati... Mangrove and salt-marsh wetlands are important coastal carbon sinks.In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon,we carried out continuous observations in a mangrove-Spartina alterniflora ecozone in the Zhangjiang River Estuary,China.The carbon fluxes via pore water exchange were estimated using^(222)Rn and^(228)Ra as tracers to be(2.15±0.63)mol/(m^(2)∙d)for dissolved inorganic carbon(DIC)and(-0.008±0.07)mol/(m^(2)∙d)for dissolved organic carbon(DOC)in the wet season and(3.02±0.65)mol/(m^(2)∙d)for DIC and(-0.15±0.007)mol/(m^(2)∙d)for DOC in the dry season in the mangrove-dominated creek(M-creek),while(2.52±0.82)mol/(m^(2)∙d)for DIC and(0.02±0.09)mol/(m^(2)∙d)for DOC in the dry season in the S.alterniflora-dominated creek(SA-creek).The negative value means that pore water was a sink of DOC in the creek.The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%-55%of the net carbon fixed by mangrove vegetation and was 3-4 times as much as the soil carbon accretion in the mangroves.The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79%of the carbon outwelling from the SA-creek,implying effective fixation of carbon by the wetland ecosystem.Moreover,it resulted in 54%in the dry season,75%in the wet season of the carbon dioxide released from the M-creek to the atmosphere,and 84%of the release from the SA-creek.Therefore,quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands. 展开更多
关键词 MANGROVE SALT-MARSH carbon dioxide carbon accretion carbon outwelling pore water exchange
下载PDF
Effect of particle composition and consolidation degree on the wave-induced liquefaction of soil beds
3
作者 Zhiyuan Chen Yupeng Ren +1 位作者 Guohui Xu Meng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期11-22,共12页
The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefact... The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon. 展开更多
关键词 wave flume LIQUEFACTION pore water pressure consolidation permeability experiment discrete element simulation
下载PDF
The dynamic characteristics of saturated remolded loess under cyclic load
4
作者 Yuting Fu Yanbo Cao +4 位作者 Jiaxu Kong Jia Zheng Jiaqi Mu Jie Wang Jianqi Zhuang 《Earthquake Research Advances》 CSCD 2024年第2期27-35,共9页
Due to the joint development characteristic and macropore structure of loess,it is easy to cause structure collapse under earthquake or artificial vibration.The study on the loess disaster effect and its mechanism und... Due to the joint development characteristic and macropore structure of loess,it is easy to cause structure collapse under earthquake or artificial vibration.The study on the loess disaster effect and its mechanism under earthquake action is insufficient due to its complexity.Hence,to study the deformation and mechanical properties more accurately,the dynamic characteristics of saturated remolded loess under cyclic dynamic load were tested using a GDS dynamic triaxial instrument in this paper.The test results show that strain and pore water pressure increase gradually at different rates with the development of vibration,and there is an obvious inflection point in the time-history curve of both.When the number of vibrations(N)exceeds this point,the strain increases rapidly,and pore water pressure tends to be stable.Under the action of large amplitude and low-frequency dynamic load,the strain and pore water pressure increase rapidly with fewer vibrations and the deviator stress(q)decreases rapidly,while the sample achieves damage faster with the increase of amplitude.During the application of a dynamic load,the effective stress(p)gradually decreases and its rate of change slows down.Finally,when the saturated remolded loess is subjected to a constant-amplitude dynamic load,the combination of large amplitude and low frequency leads to the failure of the sample in the shortest time. 展开更多
关键词 LOESS pore water pressure STRAIN FREQUENCY AMPLITUDE Quake(vibration)
下载PDF
Wave-induced pore water pressure in marine cohesive soils 被引量:10
5
作者 CHEN Yunmin LAI Xianghua +2 位作者 YE Yincan HUANG Bo JI Meixiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第4期138-145,共8页
Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore... Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a retum period of 100 a in the Hangzhou Bay, if the wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place. 展开更多
关键词 wave-induced loading cohesion soils LIQUEFACTION pore water pressure buildup Hangzhou Bay
下载PDF
Influence of pore water pressure on upper bound analysis of collapse shape for square tunnel in Hoek-Brown media 被引量:5
6
作者 黄阜 张道兵 +1 位作者 孙志彬 吴贲 《Journal of Central South University》 SCIE EI CAS 2011年第2期530-535,共6页
To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Bro... To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Brown failure criterion. The work rate of pore water pressure,which was regarded as an external rate of work,was taken into account in the framework of limit analysis. Taking advantages of variational calculation,the objective function with respect to detaching curve was optimized to obtain the effective shape of collapsing block for square tunnel. According to the numerical results,it is found that the varying pore water pressure coefficient only affects the height and width of the collapsing block,whereas the shape of collapsing block remains unchanged. 展开更多
关键词 upper hound theorem square tunnel pore water pressure variational calculation Hoek-Brown media
下载PDF
Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand 被引量:4
7
作者 Yun-kai Ji Chang-ling Liu +4 位作者 Zhun Zhang Qing-guo Meng Le-le Liu Yong-chao Zhang Neng-you Wu 《China Geology》 2022年第2期276-284,共9页
Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the... Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate.In this study,low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples.Results show that the signal intensity of T_(2) distribution isn’t affected by sediment type and pore pressure,but is affected by temperature.The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T_(2) distribution.The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media.The water conversion rate fluctuates during the hydrate formation.The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media.For the fine sand sample,the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate,but causes a large water-sand contact area resulting in a low water conversion ratio(C_(w)=96.2%).The clay can reduce the water conversion rate and ratio,especially montmorillonite(C_(w)=95.8%).The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water. 展开更多
关键词 Porous media Unsaturated sand Methane hydrates Low-field NMR pore water conversion Hydrate formation NGHs exploration trial engineering Oil and gas exploration engineering Shenhu area South China Sea
下载PDF
Geochemical Characteristics of Heavy Metals in Riparian Sediment Pore Water of Songhua River, Northeast China 被引量:2
8
作者 ZHU Hui YAN Baixing +2 位作者 PAN Xiaofen YANG Yuhong WANG Lixia 《Chinese Geographical Science》 SCIE CSCD 2011年第2期195-203,共9页
This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast Chi... This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants. 展开更多
关键词 heavy metal riparian sediment pore water water pollution Songhua River
下载PDF
The numerical study of wave-induced pore water pressure response in highly permeable seabed 被引量:2
9
作者 JIANG Changbo CHENG Yongzhou +1 位作者 CHANG Liuhong XIA Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期46-55,共10页
The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional R... The coupling numerical model of wave interaction with porous medium is used to study wave- induced pore water pressure in high permeability seabed. In the model, the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes (RANS) equations with a k-s closure, and Forchheimer equations are adopted for flow within the porous media. By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow, a highly efficient coupling between the two flows is implemented. The numerical tests are conducted to study the effects of seabed thickness, porosity, particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response. The results indicate that, as compared with regular wave-induced, solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters. The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed. The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action. 展开更多
关键词 solitary wave regular wave highly permeable SEABED pore water pressure numericalstudy
下载PDF
Fully Coupled Simulation of Interactions Among Waves, Permeable Breakwaters and Seabeds Based on N−S Equations 被引量:2
10
作者 LI Yan-ting WANG Deng-ting +2 位作者 SUN Tian-ting HUANG Zhe LIU Qing-jun 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期26-35,共10页
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for ... Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds. 展开更多
关键词 wave−breakwater−seabed interaction permeable breakwater porous seabed pore water pressure finite difference method
下载PDF
Relative roles of resuspended particles and pore water in release of contaminants from sediment 被引量:2
11
作者 Hong-wei ZHU Peng-da CHENG Dao-zeng WANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期344-350,共7页
Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff... Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage. 展开更多
关键词 sediment resuspension resuspended particle pore water release of contaminants release flux
下载PDF
Characteristics of Pore Water Pressure of Saturated Silt Under Wave Loading 被引量:1
12
作者 高玉峰 张健 +1 位作者 沈扬 闫俊 《China Ocean Engineering》 SCIE EI 2010年第1期161-172,共12页
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo... The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency. 展开更多
关键词 SILT wave loading pore water pressure vibration frequency cyclic triaxial-torsional coupling shear rotation of principal stress
下载PDF
Experimental Study of Pore Water Pressure and Bed Profile Change Under Regular Breaking Waves 被引量:1
13
作者 程永舟 蒋昌波 +2 位作者 赵利平 潘昀 李青峰 《China Ocean Engineering》 SCIE EI 2012年第3期457-468,共12页
There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy... There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed. 展开更多
关键词 breaking wave pore water pressure sloping sandy seabed flume experiment
下载PDF
Understanding the microscopic moisture migration in pore space using DEM simulation 被引量:1
14
作者 Yuan Guo Xiong(Bill) Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期171-177,共7页
The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggeringof and damages by liquefaction. The influence of pore fluid migration during earthquake has beendemonstrated... The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggeringof and damages by liquefaction. The influence of pore fluid migration during earthquake has beendemonstrated from recent model experiments and field case studies. Most of the current liquefactionassessment models are based on testing of isotropic liquefiable materials. However the recent NewZealand earthquake shows much severer damages than those predicted by existing models. A fundamentalcause has been contributed to the embedded layers of low permeability silts. The existence ofthese silt layers inhibits water migration under seismic loads, which accelerated liquefaction and causeda much larger settlement than that predicted by existing theories. This study intends to understand theprocess of moisture migration in the pore space of sand using discrete element method (DEM) simulation.Simulations were conducted on consolidated undrained triaxial testing of sand where a cylindersample of sand was built and subjected to a constant confining pressure and axial loading. The porositydistribution was monitored during the axial loading process. The spatial distribution of porosity changewas determined, which had a direct relationship with the distribution of excess pore water pressure. Thenon-uniform distribution of excess pore water pressure causes moisture migration. From this, themigration of pore water during the loading process can be estimated. The results of DEM simulationshow a few important observations: (1) External forces are mainly carried and transmitted by the particlechains of the soil sample; (2) Porosity distribution during loading is not uniform due to nonhomogeneoussoil fabric (i.e. the initial particle arrangement and existence of particle chains); (3)Excess pore water pressure develops differently at different loading stages. At the early stage of loading,zones with a high initial porosity feature higher porosity changes under the influence of external loading,which leads to a larger pore pressure variation (increase or decrease) in such zones. As the axial strainincreases, particle rearrangement occurs and final porosity distribution has minor relationship with theinitial condition, and the pore pressure distribution becomes irregular. The differences in the porepressure development imply that water will migrate in the pore space in order to balance the pore waterpressure distribution. The results of this simulation offer an insight on the microscale water migration inthe soil pore space, which is important for holistic description of the triggering of soil liquefaction in lightof its microstructure. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Moisture migration Consolidated undrained triaxial test Particle chains Porosity distribution pore water pressure
下载PDF
Pore Pressure Accumulation of Anisotropically Consolidated Soft Clay Subjected to Complex Loads Under Different Stress Paths 被引量:1
15
作者 WANG Yu-ke WAN Yong-shuai +3 位作者 RUAN Hang YU Xiang SHAO Jing-gan REN De-bo 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期465-474,共10页
Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft c... Owing to different influence factors of foundation soil,the initial stress state of the soil under various working conditions is complex.To simulate this situation,in this paper,a series of tests on undisturbed soft clay under pure principal stress axis rotation were carried out by using the hollow cylinder apparatus(HCA).The influence of initial consolidation angle ζ(the angle between the vertical direction and direction of the applied load in consolidation)and intermediate principal stress coefficient b on pore water pressure accumulation of undisturbed soft clay were mainly studied.The test results show that,during pure principal stress axis rotation,the pore water pressure accumulation of the undisturbed soft clay fluctuates and increases with the rotation of the major principal stress;the values of major principal stress anglesα,corresponding to the peak value of the pore water pressure in a certain cycle,are different with different initial consolidation angles;the pore water pressure accumulation of soft clay is greatly affected by the intermediate principal stress coefficient b.With the fixed initial consolidation angle ζ,the variation trend of the maximum pore water pressure for each cycle is appropriately the same with different b values.With the increase of cycles,the difference value of pore water pressure between b=0 and b=1 in each cycle increases gradually with different initial consolidation angles ζ.While with different initial consolidation anglesζ,the increase of the pore water pressure when b increases from 0 to 0.5 is different with that when b increases from 0.5 to 1;the variation of maximum pore water pressure withζis significantly affected by the value of b;the value of maximum pore water pressure increases with the cycle number increases under all test conditions,but the growth rate decreases gradually.And the variation of maximum pore water pressure with the cycle number N is obviously influenced by both ζ and b. 展开更多
关键词 anisotropical consolidation pure principal stress rotation soft clay pore water pressure
下载PDF
Attenuation-type and failure-type curve models on accumulated pore water pressure in saturated normal consolidated clay 被引量:1
16
作者 赵春彦 《Journal of Central South University》 SCIE EI CAS 2012年第7期2047-2053,共7页
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat... Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models. 展开更多
关键词 saturated normal consolidation clay equivalent dynamic stress level accumulated pore water pressure model attenuation-type curve failure-type curve
下载PDF
Br/Cl,I/Cl and chlorine isotopic compositions of pore water in shallow sediments:implications for the fluid sources in the Dongsha area,northern South China Sea 被引量:2
17
作者 LI Yanping JIANG Shaoyong YANG Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第4期31-36,共6页
The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,... The Dongsha area is one of the most promising target areas for gas hydrate exploration in the South China Sea(SCS).The study of pore water geochemistry has played a key role in Chinese gas hydrate exploration.Br/Cl,I/Cl and δ37Cl in pore water were applied here in tracing gas hydrate occurrence,chemical evolution of pore fluids and water/rock interactions in low temperature sediment environments.The samples were collected from Sites HD255 PC and HD309 PC in the Dongsha area in 2004.At Site HD255 PC,we found the elevated Br/Cl,I/Cl and decreased SO_4/Cl at the depth of 4–5 m,suggestive of a laterally migrated fluid probably generated from the gas hydrate occurrence.The range of δ37Cl is –0.54‰ to +0.96‰,and positive δ^(37)Cl at 4–5 m interval should be related with different diffusion rates between ^(35)Cl and ^(37)Cl.At Site HD309 PC,a laterally migrated fluid was also found at the depth of 3–4 m,with the Br/Cl two times to that of the seawater and decreased I/Cl,indicating the fluid has no relationship with the gas hydrate.In this site,the chlorine isotopic composition varies from –0.7‰ to+1.9‰.Extra high Br/Cl might relate with the deep generated fluid.At higher temperature and pressure,the Br/Cl of the fluid is elevated during the hydrous silicate formation,while positive δ37Cl is also associated with the same mechanism. 展开更多
关键词 halogen chlorine isotope pore water Dongsha area
下载PDF
The effect of pore fluid on seismicity: a computer model 被引量:1
18
作者 李丽 石耀霖 张国民 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期84-92,共9页
The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper mode... The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no water source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction. 展开更多
关键词 water pore pressure pore fluid seismic model
下载PDF
Stem flow chemistry of Picea glehnii,Abies sachalinensis and Alnus japonica and its effect on the peat pore water chemistry in an ombrogenous mire in Ochiishi,eastern Hokkaido,Japan
19
作者 Tsutomu Iyobe Akira Haraguchi 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期119-128,I0003,共11页
We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ... We investigated the chemical properties of stemflow of Picea glehnii,Abies sachalinensis and Alnus japonica as well as peat pore water chemistry,including the distance and depth profiles of pore water chemistry,in an ombrogenous mire.The effect of stemflow on the peat pore water chemistry was clear at the stem base in the peat forest in the mire,and the peat pore water around the stem base of a tree had its own chemical properties specific to each species.P.glehnii showed the highest concentration of salts both in stemflow and peat-pore water,whereas A.japonica showed the lowest concentrations;however,the gradient of the chemical environment from the stem base to outside of the canopy is formed.The peat pore water chemistry under the canopy was mainly controlled by the chemical processes diluted by the abundant peat pore water;the stemflow movement in the high water content of the peat was more slowly because of the flat topography(〈 1o).This would be due to the fact that the chemicals in stemflow would be diluted by the abundant peat pore water.The spatial heterogeneity of chemical environment between microsites within forested peatland would be also contributed indirectly through the control of microorganism activity,and nutrient regeneration mediated the surface water and the stemflow of the dominant canopy trees. 展开更多
关键词 Abies sachalinensis Alnus japonica Picea glehnii peat pore water STEMFLOW chemical properties
下载PDF
Experiment and analysis of the formation,expansion and dissipation of gasbag in fine sediments based on pore water pressure survey
20
作者 Shiyun Lei Xiujun Guo Haoru Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期91-100,共10页
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor... Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments. 展开更多
关键词 pore water pressure monitoring technology excess pore water pressure gasbag cracks gas migration
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部