The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the...The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .展开更多
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc...In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.展开更多
Submarine pipelines play an important role in offshore oil and gas development.A touchy issue in pipeline design and application is how to avoid the local collapse of pipelines under external pressure.The pipe diamete...Submarine pipelines play an important role in offshore oil and gas development.A touchy issue in pipeline design and application is how to avoid the local collapse of pipelines under external pressure.The pipe diameter-thickness ratio D/t is one of the key factors that determine the local critical collapse pressure of the submarine pipelines.Based on the pipeline collapse experiment and finite element simulation,this paper explores the pressure-bearing capacity of the pipeline under external pressure in a wide range of diameter-thickness ratio D/t.Some interesting and important phenomena have been observed and discussed.In the range of 16<D/t<80,both DNV specification and finite element simulation can predict the collapse pressure of pipeline quite well;in the range of 10<D/t<16,the DNV specification is conservative compared with the experimental results,while the finite element simulation results are slightly larger than the experimental results.Further parameter analysis shows that compared with thin-walled pipes,improving the material grade of thick-walled pipes has higher benefits,and for thin-walled pipes,the ovality f_(0)should be controlled even more.In addition,combining the results of finite element simulation and model experiment,an empirical formula of critical collapse pressure for thick-walled pipelines is proposed,which is used to correct the error of DNV specification in the range of 10<D/t<16.展开更多
This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pr...This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.展开更多
When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necess...When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.展开更多
Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. T...Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.展开更多
We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can ...We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can contribute to the pressure-dependent change of the wave velocity,we order a characteristic pressure to all of them and allow a series of exponential terms in the description of the(Pand S-waves)velocity-pressure function.We estimate the parameters of the multi-exponential rock physical model in inversion procedures using laboratory measured P-and S-wave velocity data.As is known,the conventional damped least squares method gives acceptable results only when one or two individual mechanisms are assumed.Increasing the number of exponential terms leads to highly nonlinear ill-posed inverse problem.Due to this reason,we develop the spectral inversion method(SIM)in which the velocity amplitudes(the spectral lines in the characteristic pressure spectrum)are only considered as unknowns.The characteristic pressures(belonging to the velocity amplitudes)are excluded from the set of inversion unknowns,instead,they are defined in a set of fixed positions equidistantly distributed in the actual interval of the independent variable(pressure).Through this novel linear inversion method,we estimate the parameters of the multi-exponential rock physical model using laboratory measured P-and S-wave velocity data.The characteristic pressures are related to the closing pressures of cracks which are described by well-known rock mechanical relationships depending on the aspect ratio of elliptical cracks.This gives the possibility to estimate the aspect ratios in terms of the characteristic pressures.展开更多
Discusses the elastic deformation of ellipsoidal shell of different axis ratio under inner pressure during hydraulic bulging forming with theoretical results in good agreement with actual result, thereby providing the...Discusses the elastic deformation of ellipsoidal shell of different axis ratio under inner pressure during hydraulic bulging forming with theoretical results in good agreement with actual result, thereby providing theoretical basis for hydraulic bulging forming of ellipsoidal shell.展开更多
The“cut-and-sewn” pressure garments are normally tailored made in various sizes according to the size of human body as well as the area of burn wounds.When a tubular pressure garment is cut in different length and w...The“cut-and-sewn” pressure garments are normally tailored made in various sizes according to the size of human body as well as the area of burn wounds.When a tubular pressure garment is cut in different length and width measurements,different aspect ratio will be occurred on the elastic fabric for making up the pressuregarment. Many therapists in Hong Kong concerned the change of aspect ratio may affect the tensile properties of the elastic fabric and ultimately will affect the skin-and-garment interface pressure for the patient.The aim展开更多
The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to singlemedium and two-medium air-air, air-liquid compressible flows with high ...The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to singlemedium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios: We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as themesh is refined.展开更多
Objective:The head-up tilt test(HUTT)is widely used but is time-consuming and not cost-effective to evaluate patients with vasovagal syncope(VVS).The present study aims to verify the hypothesis that ambulatory blood p...Objective:The head-up tilt test(HUTT)is widely used but is time-consuming and not cost-effective to evaluate patients with vasovagal syncope(VVS).The present study aims to verify the hypothesis that ambulatory blood pressure(BP)monitoring(ABPM)and the simplistic tilt test may be potential alternatives to the HUTT.Methods:The study consecutively enrolled 360 patients who underwent the HUTT to evaluate VVS.BP),heart rate(HR),and BP/HR ratios derived from ABPM and the simplistic tilt test were evaluated to predict the presence,pattern,and stage of syncope during the HUTT.Results:Mixed response was the commonest pattern,and syncope occurred frequently with infusion of isoproterenol at a rate of 3μg/min.During the simplistic tilt test,the cardioinhibitory group had higher tilted BP/HR ratios than the vasodepressor group,while the vasodepressor group had a faster tilted HR and a larger HR difference than the cardioinhibitory group.The higher the BP/HR ratio in the tilted position,the higher the isoproterenol dosage needed to induce a positive response.During ABPM,BP/HR ratios were signifi cantly higher in the cardioinhibitory group than in the vasodepressor group.The higher the ABPM-derived BP,the higher the dosage of isoproterenol needed to induce syncope.There were signifi cant correlations in BP/HR ratios between ABPM and the supine position in the vasodepressor group,while signifi cant correlation was found only for the diastolic BP/HR ratio between ABPM and the tilted position in the cardioinhibitory group.The mixed pattern shared correlative features of the other two patterns.Conclusion:ABPM and the simplistic tilt test might be used as promising alternatives to the HUTT in VVS evaluation in clinical settings.展开更多
Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure ...Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure at 35 m of workface recovery, and the peak overburden support pressure decreased from 13.85 Mpa to 11.97 Mpa from 1:1 to 1:3. With the increase of mining ratio, the peak over-supporting pressure decreases: with the increase of top coal recovery thickness, the peak over-supporting pressure and the influence range will be further expanded, and the distance between the peak over-supporting pressure and the coal wall of the working face will be further increased and the high stress zone of the peak area will be expanded simultaneously.展开更多
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The...Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.展开更多
To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)alumin...To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.展开更多
In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteris...In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.展开更多
An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the ...An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the distribution of inner soil pressure over the opened bottom cylindrical structure. Through investigation of the settlement and the inner soil pressure on the opened bottom cylinder by model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of friction resistance between the inner filler and the wall of the cylinder during overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the inner soil pressure on the cylindrical structure under axisymmetric loading or non- axisymmetric (with lateral) loading is proposed in this paper. Meanwhile, the effective anti-overturning ratio of the opened bottom cylinder is derived.展开更多
The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside th...The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.展开更多
An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30mm electrothermal-chemical(ETC)launch with the discharge rod plasma generator(DRPG).The re...An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30mm electrothermal-chemical(ETC)launch with the discharge rod plasma generator(DRPG).The relationship between the pressure wave and the initial parameters,such as input electric power,discharging timing sequence,loading density and propellant web thickness,is researched through the change of initial parameters in the model.In the condition of synchronous discharging,the maximum of the pressure wave can be controlled while the ratio of the input electric energy to the propellant chemical energy(electric energy ratio)is less than 0.11.If the electric energy ratio is larger than 0.11,the maximum of the pressure wave increases rapidly with the electric energy ratio.With the increasing of the electric energy ratio,the change of the first negative amplitude value can be ignored.In the condition of timing sequence discharging,the allowed input electric energy ratio to control the pressure wave is proportional to the current pulse duration.At the high electric energy ratio,the maximum of the pressure wave is inverse proportional to the current pulse duration.The pressure wave increases with the increasing of the loading density.But the allowed electric energy ratio to control the pressure wave and the variation trend of the first negative amplitude wave value doesn't change.During the discharging of the DRPG,the influence of changing propellant web thickness in ETC launch can be ignored.展开更多
Objective To estimate the prevalence of elevated blood pressure(EBP) in Chinese children and identify individual and family factors associated with EBP. Methods A nationwide cross-sectional study was conducted in 20...Objective To estimate the prevalence of elevated blood pressure(EBP) in Chinese children and identify individual and family factors associated with EBP. Methods A nationwide cross-sectional study was conducted in 2010 using stratified cluster sampling. Participants' blood pressure was measured, and their parents completed a questionnaire on personal and family characteristics. Prevalence and correlates of EBP were assessed. Results Among a total of 24,333 participants, 20.2% of boys and 16.3% of girls had EBP. The prevalence of EBP increased with the ascending trend of waist circumference, Waist-to-height ratio, and body mass index. The adjusted prevalence ratios(aP Rs) for obese boys and girls were 2.50 and 2.97, respectively. Fewer urban boys(16.2%) had EBP than rural boys(21.7%). Boys with a family history of hypertension were 12% more likely to have EBP. Children whose mothers received a college education tended to have lower likelihood of EBP; with an aP R was 0.85 among boys and 0.78 among girls. Conclusion EBP is common among obese students and those who have a family history of hypertension. A negative association between mothers' education levels and EBP risk in children was found.展开更多
The liquefaction of loess under dynamic loading is studied experimentally with a dynamic triaxial test system. The effects of over-consolidation ratio (OCR), saturation degree and the frequency of dynamic loading upon...The liquefaction of loess under dynamic loading is studied experimentally with a dynamic triaxial test system. The effects of over-consolidation ratio (OCR), saturation degree and the frequency of dynamic loading upon loess liquefaction are investigated. The development of pore pressure within loess samples is also discussed. Based on the experimental results, the empirical relationship between pore pressure ratio and loading cycle number ratio is established for normal consolidated saturated loess.展开更多
文摘The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.11802137,11702143)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0292)+1 种基金the Natural Science Foundation for Young Scientists of Jiangsu Province of China(Grant No.BK20190468)the Fundamental Research Funds for the Central Universities(Grant Nos.30918011343,30919011259,309190112A1).
文摘In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223 and 51979193)the Major Consulting Project of Academy-Local Cooperation of Chinese Academy of Engineering(Grant No.2021DFZD2)。
文摘Submarine pipelines play an important role in offshore oil and gas development.A touchy issue in pipeline design and application is how to avoid the local collapse of pipelines under external pressure.The pipe diameter-thickness ratio D/t is one of the key factors that determine the local critical collapse pressure of the submarine pipelines.Based on the pipeline collapse experiment and finite element simulation,this paper explores the pressure-bearing capacity of the pipeline under external pressure in a wide range of diameter-thickness ratio D/t.Some interesting and important phenomena have been observed and discussed.In the range of 16<D/t<80,both DNV specification and finite element simulation can predict the collapse pressure of pipeline quite well;in the range of 10<D/t<16,the DNV specification is conservative compared with the experimental results,while the finite element simulation results are slightly larger than the experimental results.Further parameter analysis shows that compared with thin-walled pipes,improving the material grade of thick-walled pipes has higher benefits,and for thin-walled pipes,the ovality f_(0)should be controlled even more.In addition,combining the results of finite element simulation and model experiment,an empirical formula of critical collapse pressure for thick-walled pipelines is proposed,which is used to correct the error of DNV specification in the range of 10<D/t<16.
基金supported by the Beijing Jointly Building Project of Key Discipline-the High Efficiency Utilization of Fast Growing Wood
文摘This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan Universitysupport of Prince Sultan University in paying the article processing charges(APC)for this publication.
文摘When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.
文摘Experiments were conducted to obtain the values of the Sauter bubble size, enrichment and recovery of bovine serum albumin (BSA) in a semi-batch col- umn fitted with a stainless steel sparger at elevated pressure. The effects of Sur- face tension, surfactant concentration, foam/solution height ratio and air flow rate on the separation performance were investigated, and the results showed that good en- richments and recoveries can be achieved for bovine serum albumin operated at el- evated pressures. Especially the size of bubbles generated by the stainless steel sparger was smaller at higher pressures which is favorable to the foam separation process. Furthermore, the separation mechanism of bovine serum albumin operated at elevated pressure was also discussed.
基金supported by the European Union,co-financed by the European Social Fund and the GINOP-2.315-2016-00010"Development of enhanced engineering methods with the aim at utilization of subterranean energy resources"project in the framework of the Szechenyi 2020 Plan,funded by the European Union,co-financed by the European Structural and Investment Funds。
文摘We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can contribute to the pressure-dependent change of the wave velocity,we order a characteristic pressure to all of them and allow a series of exponential terms in the description of the(Pand S-waves)velocity-pressure function.We estimate the parameters of the multi-exponential rock physical model in inversion procedures using laboratory measured P-and S-wave velocity data.As is known,the conventional damped least squares method gives acceptable results only when one or two individual mechanisms are assumed.Increasing the number of exponential terms leads to highly nonlinear ill-posed inverse problem.Due to this reason,we develop the spectral inversion method(SIM)in which the velocity amplitudes(the spectral lines in the characteristic pressure spectrum)are only considered as unknowns.The characteristic pressures(belonging to the velocity amplitudes)are excluded from the set of inversion unknowns,instead,they are defined in a set of fixed positions equidistantly distributed in the actual interval of the independent variable(pressure).Through this novel linear inversion method,we estimate the parameters of the multi-exponential rock physical model using laboratory measured P-and S-wave velocity data.The characteristic pressures are related to the closing pressures of cracks which are described by well-known rock mechanical relationships depending on the aspect ratio of elliptical cracks.This gives the possibility to estimate the aspect ratios in terms of the characteristic pressures.
文摘Discusses the elastic deformation of ellipsoidal shell of different axis ratio under inner pressure during hydraulic bulging forming with theoretical results in good agreement with actual result, thereby providing theoretical basis for hydraulic bulging forming of ellipsoidal shell.
文摘The“cut-and-sewn” pressure garments are normally tailored made in various sizes according to the size of human body as well as the area of burn wounds.When a tubular pressure garment is cut in different length and width measurements,different aspect ratio will be occurred on the elastic fabric for making up the pressuregarment. Many therapists in Hong Kong concerned the change of aspect ratio may affect the tensile properties of the elastic fabric and ultimately will affect the skin-and-garment interface pressure for the patient.The aim
基金the National Natural Science Foundation of China(No.10671120)
文摘The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to singlemedium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios: We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as themesh is refined.
基金the Guangdong Natural Science Foundation Project(2018A030313531)the Yat-Sen Scholarship for Young Scientists.
文摘Objective:The head-up tilt test(HUTT)is widely used but is time-consuming and not cost-effective to evaluate patients with vasovagal syncope(VVS).The present study aims to verify the hypothesis that ambulatory blood pressure(BP)monitoring(ABPM)and the simplistic tilt test may be potential alternatives to the HUTT.Methods:The study consecutively enrolled 360 patients who underwent the HUTT to evaluate VVS.BP),heart rate(HR),and BP/HR ratios derived from ABPM and the simplistic tilt test were evaluated to predict the presence,pattern,and stage of syncope during the HUTT.Results:Mixed response was the commonest pattern,and syncope occurred frequently with infusion of isoproterenol at a rate of 3μg/min.During the simplistic tilt test,the cardioinhibitory group had higher tilted BP/HR ratios than the vasodepressor group,while the vasodepressor group had a faster tilted HR and a larger HR difference than the cardioinhibitory group.The higher the BP/HR ratio in the tilted position,the higher the isoproterenol dosage needed to induce a positive response.During ABPM,BP/HR ratios were signifi cantly higher in the cardioinhibitory group than in the vasodepressor group.The higher the ABPM-derived BP,the higher the dosage of isoproterenol needed to induce syncope.There were signifi cant correlations in BP/HR ratios between ABPM and the supine position in the vasodepressor group,while signifi cant correlation was found only for the diastolic BP/HR ratio between ABPM and the tilted position in the cardioinhibitory group.The mixed pattern shared correlative features of the other two patterns.Conclusion:ABPM and the simplistic tilt test might be used as promising alternatives to the HUTT in VVS evaluation in clinical settings.
文摘Through the theoretical analysis of overburden destabilization mechanism, FLAC 3D simplified plane numerical simulation method and field measurement method, we compared the relationship of overburden support pressure at 35 m of workface recovery, and the peak overburden support pressure decreased from 13.85 Mpa to 11.97 Mpa from 1:1 to 1:3. With the increase of mining ratio, the peak over-supporting pressure decreases: with the increase of top coal recovery thickness, the peak over-supporting pressure and the influence range will be further expanded, and the distance between the peak over-supporting pressure and the coal wall of the working face will be further increased and the high stress zone of the peak area will be expanded simultaneously.
基金The National Basic Research Program of China(973 Program) (No2004CB217702-01)the Foundation of ExcellentPhDThesis of Southeast University
文摘Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.
基金supported by National Natural Science Foundation of China (Grant no.11502194)
文摘To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50534040)the Project of the Science and Technology Ministry of China(No.2006BAB16B01)the Post Graduate Research Project of Jiangsu Province (No.CX08B_103Z),
文摘In this study consecutive consolidated isotropically drained triaxial tests for the coefficient of earth pressure at rest(K_0) were carried out to investigate its rules of evolution as well as its strength characteristics for normal,consolidated saturated silt under high pressure.The tests results indicate that:1) for normal,consolidated saturated silt,K_0 values increase as the consolidation stress increases at high pressure levels,while the nonlinear characteristics of K_0 are inconspicuous compared to cohesive soils;2) the Jaky and Roscoe equations,used to calculate K_0,are only suitable for certain soils,but cannot represent these values for normal, consolidated saturated silt due to the variation in bilinear strength at high pressure;and 3) there are close relations between the nonlinear characteristics of K_0 and the void ratio,measured in the tests.Both share the same functional form while under pressure. Based on our experimental results,we developed an empirical linear model to interpret the rules of nonlinear variation for the coefficient of earth pressure at rest.
文摘An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the distribution of inner soil pressure over the opened bottom cylindrical structure. Through investigation of the settlement and the inner soil pressure on the opened bottom cylinder by model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of friction resistance between the inner filler and the wall of the cylinder during overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the inner soil pressure on the cylindrical structure under axisymmetric loading or non- axisymmetric (with lateral) loading is proposed in this paper. Meanwhile, the effective anti-overturning ratio of the opened bottom cylinder is derived.
基金Project(2011-0009022) supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.
文摘An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30mm electrothermal-chemical(ETC)launch with the discharge rod plasma generator(DRPG).The relationship between the pressure wave and the initial parameters,such as input electric power,discharging timing sequence,loading density and propellant web thickness,is researched through the change of initial parameters in the model.In the condition of synchronous discharging,the maximum of the pressure wave can be controlled while the ratio of the input electric energy to the propellant chemical energy(electric energy ratio)is less than 0.11.If the electric energy ratio is larger than 0.11,the maximum of the pressure wave increases rapidly with the electric energy ratio.With the increasing of the electric energy ratio,the change of the first negative amplitude value can be ignored.In the condition of timing sequence discharging,the allowed input electric energy ratio to control the pressure wave is proportional to the current pulse duration.At the high electric energy ratio,the maximum of the pressure wave is inverse proportional to the current pulse duration.The pressure wave increases with the increasing of the loading density.But the allowed electric energy ratio to control the pressure wave and the variation trend of the first negative amplitude wave value doesn't change.During the discharging of the DRPG,the influence of changing propellant web thickness in ETC launch can be ignored.
基金supported by the Young Scholar Scientific Research Foundation of the Chinese Center for Disease Control and Prevention(grant#China CDC 2010A205)
文摘Objective To estimate the prevalence of elevated blood pressure(EBP) in Chinese children and identify individual and family factors associated with EBP. Methods A nationwide cross-sectional study was conducted in 2010 using stratified cluster sampling. Participants' blood pressure was measured, and their parents completed a questionnaire on personal and family characteristics. Prevalence and correlates of EBP were assessed. Results Among a total of 24,333 participants, 20.2% of boys and 16.3% of girls had EBP. The prevalence of EBP increased with the ascending trend of waist circumference, Waist-to-height ratio, and body mass index. The adjusted prevalence ratios(aP Rs) for obese boys and girls were 2.50 and 2.97, respectively. Fewer urban boys(16.2%) had EBP than rural boys(21.7%). Boys with a family history of hypertension were 12% more likely to have EBP. Children whose mothers received a college education tended to have lower likelihood of EBP; with an aP R was 0.85 among boys and 0.78 among girls. Conclusion EBP is common among obese students and those who have a family history of hypertension. A negative association between mothers' education levels and EBP risk in children was found.
基金The project supported by the National Natural Science Foundation of China(50178005)
文摘The liquefaction of loess under dynamic loading is studied experimentally with a dynamic triaxial test system. The effects of over-consolidation ratio (OCR), saturation degree and the frequency of dynamic loading upon loess liquefaction are investigated. The development of pore pressure within loess samples is also discussed. Based on the experimental results, the empirical relationship between pore pressure ratio and loading cycle number ratio is established for normal consolidated saturated loess.