期刊文献+
共找到516,169篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of pore geometry influence on fluid flow in heterogeneous porous media:A pore-scale study 被引量:2
1
作者 Ramin Soltanmohammadi Shohreh Iraji +3 位作者 Tales Rodrigues de Almeida Mateus Basso Eddy Ruidiaz Munoz Alexandre Campane Vidal 《Energy Geoscience》 EI 2024年第1期72-88,共17页
Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing ex... Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs. 展开更多
关键词 pore-scale modeling Pore geometry Flow streamlines Computational modeling Digital rock analysis
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
2
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
3
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
4
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
5
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Numerical simulation of displacement characteristics of CO_2 injected in pore-scale porous media 被引量:8
6
作者 Qianlin Zhu Qianlong Zhou Xiaochun Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期87-92,共6页
Pore structure of porous media, including pore size and topology, is rather complex. In immiscible twophase displacement process, the capillary force affected by pore size dominates the two-phase flow in the porous me... Pore structure of porous media, including pore size and topology, is rather complex. In immiscible twophase displacement process, the capillary force affected by pore size dominates the two-phase flow in the porous media, affecting displacement results. Direct observation of the flow patterns in the porous media is difficult, and therefore knowledge about the two-phase displacement flow is insufficient. In this paper, a two-dimensional(2D) pore structure was extracted from a sandstone sample, and the flow process that CO_2 displaces resident brine in the extracted pore structure was simulated using the Navier eStokes equation combined with the conservative level set method. The simulation results reveal that the pore throat is a crucial factor for determining CO_2 displacement process in the porous media. The two-phase meniscuses in each pore throat were in a self-adjusting process. In the displacement process,CO_2 preferentially broke through the maximum pore throat. Before breaking through the maximum pore throat, the pressure of CO_2 continually increased, and the curvature and position of two-phase interfaces in the other pore throats adjusted accordingly. Once the maximum pore throat was broken through by the CO_2, the capillary force in the other pore throats released accordingly; subsequently, the interfaces withdrew under the effect of capillary fore, preparing for breaking through the next pore throat.Therefore, the two-phase displacement in CO_2 injection is accompanied by the breaking through and adjusting of the two-phase interfaces. 展开更多
关键词 Level set method DISPLACEMENT pore-scale porous media Numerical simulation
下载PDF
Pore-scale study of the pressure-sensitive effect of sandstone and its influence on multiphase flows 被引量:4
7
作者 Jun-Jian Li Yang Liu +2 位作者 Ya-Jun Gao Bao-Yang Cheng Han-Qiao Jiang 《Petroleum Science》 SCIE CAS CSCD 2019年第2期382-395,共14页
The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore ... The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation. 展开更多
关键词 PRESSURE SENSITIVE - QEMSCAN MICRO-CT PORE network model MULTIPHASE flow
下载PDF
Numerical simulation of pore-scale flow in chemical flooding process 被引量:3
8
作者 Xiaobo Li,~(1,a) Shuhong Wu,~1 Jie Song,~1 Hua Li,~1 and Shuping Wang~2 1.Research Institute of Petroleum Exploration & Development of Petrochina,Beijing 100083,China 2)Petroleum Exploration & Production Research Institute of Sinopec,Beijing 100083,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第2期68-72,共5页
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and nume... Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery. 展开更多
关键词 chemical flooding pore-scale flow dissipative particle dynamics mesoscopic simulation enhanced oil recovery
下载PDF
Pore-scale simulation of gas-water flow in low permeability gas reservoirs 被引量:2
9
作者 曹廷宽 段永刚 +2 位作者 郁伯铭 方全堂 王容 《Journal of Central South University》 SCIE EI CAS 2014年第7期2793-2800,共8页
A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C... A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high. 展开更多
关键词 low permeability sandstone X-ray computed tomography pore-scale modeling pore structure gas-water flow
下载PDF
Three-Dimensional Imaging of Pore-Scale Water Flooding Phenomena in Water-Wet and Oil-Wet Porous Media 被引量:2
10
作者 Arief Setiawan Tetsuya Suekane +1 位作者 Yoshihiro Deguchi Koji Kusano 《Journal of Flow Control, Measurement & Visualization》 2014年第2期25-31,共7页
The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestru... The penetration of water during water flooding has been observed over many years using several methods. A microfocused X-ray computed tomography scanner can be used to directly observe 3D water flooding in a nondestructive manner. To eliminate the possibility of false images being produced because of X-ray broadening effects, we developed a visualization method by arranging the brightness distribution of all phases involved. Water flooding experiments were conducted using oil-wet and water-wet porous media. The water phase was injected upward into packed glass beads containing an oil phase, and the process was scanned every minute until steady state was reached. Using this scheme, real-time, the water invasion pattern and oil trapping process in clusters of pores and individual pores can be observed clearly. By eliminating false images, the boundary of each phase could be identified with high precision, even in a single pore. Porelevel phenomena, including snap off (which has never before been captured in a real 3D porous medium), piston-like displacement, and the curvature of the interface, were also observed. Direct measurement of the pore throat radius and the contact angle between the wetting and nonwetting phases gave an approximation of the capillary pressure during the piston-like displacement and snap-off processes. 展开更多
关键词 Visualization Porous Medium pore-scale WATER FLOODING OIL Trapping X-Ray CT Scanner
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
11
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
12
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:4
13
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Pore-scale study based on lattice Boltzmann method of density driven natural convection during CO_2 injection project
14
作者 Abdelmalek Atia Kamal Mohammedi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1593-1602,共10页
Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to ... Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to a small increase in the density of the aqueous phase.This situation results in the creation of negative buoyancy force for downward density-driven natural convection and consequently enhances CO_2 sequestration.In order to study CO_2 injection at pore-level,an isothermal Lattice Boltzmann Model(LBM) with two distribution functions is adopted to simulate density-driven natural convection in porous media with irregular geometry obtained by image treatment.The present analysis showed that after the onset of natural convection instability,the brine with a high CO_2 concentration infringed into the underlying unaffected brine,in favor of the migration of CO_2 into the pore structure.With low Rayleigh numbers,the instantaneous mass flux and total dissolved CO_2 mass are very close to that derived from penetration theory(diffusion only),but the fluxes are significantly enhanced with high Ra number.The simulated results show that as the time increases,some chaotic and recirculation zones in the flow appear obviously,which promotes the renewal of interfacial liquid,and hence enhances dissolution of CO_2 into brine.This study is focused on the scale of a few pores,but shows implications in enhanced oil/gas recovery with CO_2 sequestration in aquifers. 展开更多
关键词 Lattice Boltzmann method Density driven pore-scale CO2 Mass transfer
下载PDF
Image super‐resolution via dynamic network 被引量:1
15
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
16
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
17
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Computing Power Network:A Survey 被引量:1
18
作者 Sun Yukun Lei Bo +4 位作者 Liu Junlin Huang Haonan Zhang Xing Peng Jing Wang Wenbo 《China Communications》 SCIE CSCD 2024年第9期109-145,共37页
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these... With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well. 展开更多
关键词 computing power modeling computing power network computing power scheduling information awareness network forwarding
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
19
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media
20
作者 LI Tao LI Min +2 位作者 JING Xueqi XIAO Wenlian CUI Qingwu 《Petroleum Exploration and Development》 2019年第3期594-604,共11页
Based on micro-CT scanning experiments, three-dimensional digital cores of tight sandstones were established to quantitatively evaluate pore-scale anisotropy and pore-distribution heterogeneity. The quartet structure ... Based on micro-CT scanning experiments, three-dimensional digital cores of tight sandstones were established to quantitatively evaluate pore-scale anisotropy and pore-distribution heterogeneity. The quartet structure generation set method was used to generate three-dimensional anisotropic, heterogeneous porous media models. A multi-relaxation-time lattice Boltzmann model was applied to analyze relationships of permeability with pore-scale anisotropy and pore distribution heterogeneity, and the microscopic influence mechanism was also investigated. The tight sandstones are of complex pore morphology, strong anisotropy and pore distribution heterogeneity, while anisotropy factor has obvious directivity. The obvious anisotropy influences the orientation of long axis of pores and fluid flow path, making tortuosity smaller and flowing energy loss less in the direction with the greater anisotropy factor. The strong correlation of tortuosity and anisotropy is the inherent reason of anisotropy acting on permeability. The influence of pore distribution heterogeneity on permeability is the combined effects of specific surface area and tortuosity, while the product of specific surface area and tortuosity shows significantly negative correlation with heterogeneity. The stronger the pore distribution heterogeneity, the smaller the product and the greater the permeability. In addition, the permeability and tortuosity of complex porous media satisfy a power relation with a high fitting precision, which can be applied for approximate estimation of core permeability. 展开更多
关键词 tight SANDSTONE pore-scale ANISOTROPY PORE distribution specific surface area TORTUOSITY PERMEABILITY influence mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部