We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ...We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted...The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.展开更多
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c...Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.展开更多
Governing equations for a fully coupled flowing-reaction-deformation behavior with mass transfer in heap leaching are developed. The model equations are solved using an explicit finite difference method under the cond...Governing equations for a fully coupled flowing-reaction-deformation behavior with mass transfer in heap leaching are developed. The model equations are solved using an explicit finite difference method under the conditions of invariable application rate and constant hydraulic head. The distribution of the degree of the saturation, as well as the distributions of the concentration of the reagent and the solute is given. A cubic relationship between the mineral recovery and the leaching duration is obtained based on the numerical results. The relationship can be used to predict the recovery percentage of the valuable metal.展开更多
Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for...Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for predicting reservoir pore types based on pore shape substitution.The pore shape substitution allows for accurately characterizing the changes in the elastic properties of the rock with the changes in pore shape,assuming there are no changes in terms of minerals,porosity,or fl uids.By employing a multiple-porosity variable critical porosity model,the eff ective pore aspect ratio could be inverted from the velocities of the rock.To perform pore shape substitution,we could replace the eff ective pore aspect ratio with another pore aspect ratio or increase/decrease the volume content of diff erent pore shapes.The reservoir pore types could be evaluated by comparing the differences in the reservoir velocities before and after the substitution of the pore shape.The test results pertaining to the theoretical model and the well logging data indicated that the pore shape substitution method could be applied to characterize pore types in terms of separating the eff ects of the pore shapes from the eff ects of the minerals,porosity,or fl uids on the velocities.展开更多
The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid ...The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.展开更多
Determination of water saturation is important for reservoir evaluation. When complex pore structures such as fracture and cavity are present in reservoir, Archie equation is no longer suitable. According to different...Determination of water saturation is important for reservoir evaluation. When complex pore structures such as fracture and cavity are present in reservoir, Archie equation is no longer suitable. According to different models of pore structure division, the authors studied water saturation conlputation models. The results show that dual porosity system is divided into four models. The first model is based on dual laterolog, the second is Dual Porosity I , the third is Dual Porosity Ⅱ , and the last one is based on the conductive pore. Besides, the triple porosity system is triple porosity model. Compute water saturation was using all the above five models in volcanic reservoir in Songnan gas field. The triple porosity system is the most suitable model for water saturation computation in complex pore structure volcanic reservoir.展开更多
The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing factor L is based on the Powers model, in which considerable simplifications are assumed. A b...The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing factor L is based on the Powers model, in which considerable simplifications are assumed. A better solution is provided by the Philleo factor, which determines the percentage content of protected paste located at a distance S from the edge of the nearest air void. Developing the concept put forward by Philleo, a method of determining the volume of protected paste on the basis of images generated from the numerical model of concrete grain structure including layout of aggregate-paste-air, is proposed. It is the ratio of the volume of the paste protected by air voids to the total paste volume. The PPV (protected paste volume) index accounts not only for sizes and number of air voids, but also for the role of aggregate particles in the placement of these pores, which is often disregarded in analyses. The PPV results obtained from image analysis were compared with standard spacing factor L and with the parameter developed by Philleo. The analyses conducted by the authors shows that accounting for aggregate grains in calculations substantially affects the assessment of the quality of the air-pore structure.展开更多
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa...Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.展开更多
This work highlights the application of Artificial Neural Networks optimized by Cuckoo optimization algorithm for predictions of NMR log parameters including porosity and permeability by using field log data.The NMR l...This work highlights the application of Artificial Neural Networks optimized by Cuckoo optimization algorithm for predictions of NMR log parameters including porosity and permeability by using field log data.The NMR logging data have some highly vital privileges over conventional ones.The measured porosity is independent from bearer pore fluid and is effective porosity not total.Moreover,the permeability achieved by exact measurement and calculation considering clay content and pore fluid type.Therefore availability of the NMR data brings a great leverage in understanding the reservoir properties and also perfectly modelling the reservoir.Therefore,achieving NMR logging data by a model fed by a far inferior and less costly conventional logging data is a great privilege.The input parameters of model were neutron porosity(NPHI),sonic transit time(DT),bulk density(RHOB)and electrical resistivity(RT).The outputs of model were also permeability and porosity values.The structure developed model was build and trained by using train data.Graphical and statistical validation of results showed that the developed model is effective in prediction of field NMR log data.Outcomes show great possibility of using conventional logging data be used in order to reach the precious NMR logging data without any unnecessary costly tests for a reservoir.Moreover,the considerable accuracy of newly ANN-Cuckoo method also demonstrated.This study can be an illuminator in areas of reservoir engineering and modelling studies were presence of accurate data must be essential.展开更多
There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Develo...There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.展开更多
Shale gas reservoirs are found all over the world.Their endowment worldwide is estimated at 10,000 tcf by the GFREE team in the Schulich School of Engineering at the University of Calgary.The shale gas work and produc...Shale gas reservoirs are found all over the world.Their endowment worldwide is estimated at 10,000 tcf by the GFREE team in the Schulich School of Engineering at the University of Calgary.The shale gas work and production initiated successfully in the Unites States and extended to Canada will have application,with modifications,in several other countries in the future.The‘modifications’qualifier is important as each shale gas reservoir should be considered as a research project by itself to avoid fiascos and major financial losses.Shale gas reservoirs are best represented by at least quadruple porosity models.Some of the production obtained from shale reservoirs is dominated by diffusion flow.The approximate boundary between viscous and diffusion-like flow is estimated with Knudsen number.Viscous flow is present,for example,when the architecture of the rock is dominated by mega pore throat,macro pore throat,meso pore throat and sometimes micro pore throat.Diffusion flow on the other hand is observed at the nano pore throat level.The process speed concept has been used successfully in conventional reservoirs for several decades.However,the concept discussed in this paper for tight gas and shale gas reservoirs,with the support of core data,has been developed only recently,and permits differentiating between viscous and diffusion dominated flow.This is valuable,for example,in those cases where the formation to be developed is composed of alternating stacked layers of tight sands and shales,or where there are lateral variations due to facies changes.An approach to develop the concept of a super-giant shale gas reservoir is presented as well as a description of GFREE,a successful research program for tight formations.The paper closes with examples of detailed original gas-in-place(OGIP)calculations for 3 North American shale gas reservoirs including free gas in natural fractures and the porous network within the organic matter,gas in the non-organic matter,adsorbed gas,and estimates of free gas within fractures created during hydraulic fracturing jobs.The examples show that the amount of free gas in shale reservoirs,as a percent of the total OGIP,is probably larger than considered previously in the literature.展开更多
基金Equinor for financing the R&D projectthe Institute of Science and Technology of Petroleum Geophysics of Brazil for supporting this research。
文摘We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
文摘The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Basic Research Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.
基金Project supported by the National Basic Research and Development Program of China (No.2004CB619206)the National Science Fund for Distinguished Young Scholars (No.50325415)+1 种基金the National Science Fund for Innovative Research Group (No.50321402)the Natural Science Foundation of Hunan Province (No.06JJ30024)
文摘Governing equations for a fully coupled flowing-reaction-deformation behavior with mass transfer in heap leaching are developed. The model equations are solved using an explicit finite difference method under the conditions of invariable application rate and constant hydraulic head. The distribution of the degree of the saturation, as well as the distributions of the concentration of the reagent and the solute is given. A cubic relationship between the mineral recovery and the leaching duration is obtained based on the numerical results. The relationship can be used to predict the recovery percentage of the valuable metal.
基金the National Natural Science Foundation of China(Nos.42074136,41674130)National Key S&T Special Project of China(No.2016ZX05027-004-001)the Fundamental Research Funds for the Central University(No.18CX02061A).
文摘Carbonate,tight sandstone,and shale reservoirs have many pore types,and the relationship between the porosity and elastic parameters is extremely discrete due to the complex pore shape.This paper presents a method for predicting reservoir pore types based on pore shape substitution.The pore shape substitution allows for accurately characterizing the changes in the elastic properties of the rock with the changes in pore shape,assuming there are no changes in terms of minerals,porosity,or fl uids.By employing a multiple-porosity variable critical porosity model,the eff ective pore aspect ratio could be inverted from the velocities of the rock.To perform pore shape substitution,we could replace the eff ective pore aspect ratio with another pore aspect ratio or increase/decrease the volume content of diff erent pore shapes.The reservoir pore types could be evaluated by comparing the differences in the reservoir velocities before and after the substitution of the pore shape.The test results pertaining to the theoretical model and the well logging data indicated that the pore shape substitution method could be applied to characterize pore types in terms of separating the eff ects of the pore shapes from the eff ects of the minerals,porosity,or fl uids on the velocities.
基金supported by the National Nature Science Foundation of China(No.51278383,No.51238009 and No.51025827)Key Scientific and Technological Innovation Team of Zhejiang Province(No.2011R50020)Key Scientific and Technological Innovation Team of Wenzhou(No.C20120006)
文摘The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.
基金Supported by the National Natural Science Foundation of China(No.41174096)
文摘Determination of water saturation is important for reservoir evaluation. When complex pore structures such as fracture and cavity are present in reservoir, Archie equation is no longer suitable. According to different models of pore structure division, the authors studied water saturation conlputation models. The results show that dual porosity system is divided into four models. The first model is based on dual laterolog, the second is Dual Porosity I , the third is Dual Porosity Ⅱ , and the last one is based on the conductive pore. Besides, the triple porosity system is triple porosity model. Compute water saturation was using all the above five models in volcanic reservoir in Songnan gas field. The triple porosity system is the most suitable model for water saturation computation in complex pore structure volcanic reservoir.
文摘The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing factor L is based on the Powers model, in which considerable simplifications are assumed. A better solution is provided by the Philleo factor, which determines the percentage content of protected paste located at a distance S from the edge of the nearest air void. Developing the concept put forward by Philleo, a method of determining the volume of protected paste on the basis of images generated from the numerical model of concrete grain structure including layout of aggregate-paste-air, is proposed. It is the ratio of the volume of the paste protected by air voids to the total paste volume. The PPV (protected paste volume) index accounts not only for sizes and number of air voids, but also for the role of aggregate particles in the placement of these pores, which is often disregarded in analyses. The PPV results obtained from image analysis were compared with standard spacing factor L and with the parameter developed by Philleo. The analyses conducted by the authors shows that accounting for aggregate grains in calculations substantially affects the assessment of the quality of the air-pore structure.
基金the National Science Fund for Distinguished Young Scholars(No.52225403)the Natural Science Foundation of Shanxi Province(No.202303021212073)the National Natural Science Foundation of China(No.52104210)。
文摘Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.
文摘This work highlights the application of Artificial Neural Networks optimized by Cuckoo optimization algorithm for predictions of NMR log parameters including porosity and permeability by using field log data.The NMR logging data have some highly vital privileges over conventional ones.The measured porosity is independent from bearer pore fluid and is effective porosity not total.Moreover,the permeability achieved by exact measurement and calculation considering clay content and pore fluid type.Therefore availability of the NMR data brings a great leverage in understanding the reservoir properties and also perfectly modelling the reservoir.Therefore,achieving NMR logging data by a model fed by a far inferior and less costly conventional logging data is a great privilege.The input parameters of model were neutron porosity(NPHI),sonic transit time(DT),bulk density(RHOB)and electrical resistivity(RT).The outputs of model were also permeability and porosity values.The structure developed model was build and trained by using train data.Graphical and statistical validation of results showed that the developed model is effective in prediction of field NMR log data.Outcomes show great possibility of using conventional logging data be used in order to reach the precious NMR logging data without any unnecessary costly tests for a reservoir.Moreover,the considerable accuracy of newly ANN-Cuckoo method also demonstrated.This study can be an illuminator in areas of reservoir engineering and modelling studies were presence of accurate data must be essential.
文摘There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.
基金Parts of this work were funded by the Natural Sciences and Engineering Research Council of Canada(NSERC agreement 347825-06)ConocoPhillips(agreement 4204638)+2 种基金Alberta Innovates Energy and Environment Solutions(AERI agreement 1711)the Schulich School of Engineering at the University of Calgary and Servipetrol Ltd.Porosities and permeabilities from Nikanassin drill cuttings were determined by Nisael Solano of the University of Calgary using Darcylog equipment provided by Mr.Roland Lenormand of Cydarex in Paris,FranceThe 3D hydraulic fracturing simulation was performed using GOHFER,contributed to the GFREE Research program by R.D.Barree of B&A and Kevin Svatek of Core Lab.
文摘Shale gas reservoirs are found all over the world.Their endowment worldwide is estimated at 10,000 tcf by the GFREE team in the Schulich School of Engineering at the University of Calgary.The shale gas work and production initiated successfully in the Unites States and extended to Canada will have application,with modifications,in several other countries in the future.The‘modifications’qualifier is important as each shale gas reservoir should be considered as a research project by itself to avoid fiascos and major financial losses.Shale gas reservoirs are best represented by at least quadruple porosity models.Some of the production obtained from shale reservoirs is dominated by diffusion flow.The approximate boundary between viscous and diffusion-like flow is estimated with Knudsen number.Viscous flow is present,for example,when the architecture of the rock is dominated by mega pore throat,macro pore throat,meso pore throat and sometimes micro pore throat.Diffusion flow on the other hand is observed at the nano pore throat level.The process speed concept has been used successfully in conventional reservoirs for several decades.However,the concept discussed in this paper for tight gas and shale gas reservoirs,with the support of core data,has been developed only recently,and permits differentiating between viscous and diffusion dominated flow.This is valuable,for example,in those cases where the formation to be developed is composed of alternating stacked layers of tight sands and shales,or where there are lateral variations due to facies changes.An approach to develop the concept of a super-giant shale gas reservoir is presented as well as a description of GFREE,a successful research program for tight formations.The paper closes with examples of detailed original gas-in-place(OGIP)calculations for 3 North American shale gas reservoirs including free gas in natural fractures and the porous network within the organic matter,gas in the non-organic matter,adsorbed gas,and estimates of free gas within fractures created during hydraulic fracturing jobs.The examples show that the amount of free gas in shale reservoirs,as a percent of the total OGIP,is probably larger than considered previously in the literature.