期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy 被引量:9
1
作者 蒋光锐 李言祥 刘源 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期88-95,共8页
By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show th... By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show that the pore structure is primarily dependent on the solidification mode(planar,columnar cellular,columnar dendritic,equiaxed dendritic),which is controlled by the solidification process.By numerical simulation,it is noted that along with solidification,the solidification mode of the alloy transforms from cellular to columnar dendritic and finally to equiaxed dendritic.Through increasing melt temperature and mold preheating,the range of equiaxed dendrite could be decreased,which helps to extend the region of oriented pore structure. 展开更多
关键词 porous Cu-Mn alloy solidification mode GASAR process metal-gas eutectic
下载PDF
Phase transformation and damping behavior of lightweight porous TiNiCu alloys fabricated by powder metallurgy process 被引量:2
2
作者 江鸿杰 柯常波 +2 位作者 曹姗姗 马骁 张新平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2029-2036,共8页
Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of th... Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of the fabricated alloys were intensively studied. It is found that the apparent density of alloys decreases with increasing the Cu content, the porous Ti50Ni40Cu10 alloy exhibits wide endothermic and exothermic peaks arisen from the hysteresis of martensitic transformations, while the porous Ti50Ni30Cu20 alloy shows much stronger and narrower endothermic and exothermic peaks owing to the B2-B19 transformation taking place easily. Moreover, the porous Ti50Ni40Cu10 alloy shows a lower shape recovery rate than the porous Ti50Ni50 alloy, while the porous Ti50Ni30Cu20 alloy behaves reversely. In addition, the damping capacity (or internal friction, IF) of the porous TiNiCu alloys increases with increasing the Cu content. The porous Ti50Ni30Cu20 alloy has very high equivalent internal friction, with the maximum equivalent internal friction value five times higher than that of the porous Ti50Ni50 alloy. 展开更多
关键词 porous TiNiCu alloys powder metallurgy martensitic transformation damping behavior
下载PDF
Effect of gelcasting conditions on quality of porous Al-Cu alloy 被引量:1
3
作者 袁海英 贾成厂 +4 位作者 王聪聪 常宇宏 张新新 Bekouche KARIMA 王召利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期2018-2026,共9页
The porous A1-Cu alloy was prepared by the gelcasting process. And the effects of gelcasting conditions, such as monomer, the volume ratio of cross-linker and monomer, dispersant and redox initiating system on the hei... The porous A1-Cu alloy was prepared by the gelcasting process. And the effects of gelcasting conditions, such as monomer, the volume ratio of cross-linker and monomer, dispersant and redox initiating system on the height, gelling time and the quality of green body were investigated. (It was found that the dispersant and monomer played significant roles in the height and quality of green bodies, respectively.) The optimal conditions were 10% monomer, 2% cross-linker, 0.2% initiator (volume fraction), and 1.2 g dispersant, in which the green body exhibited the best quality. The mechanisms of process conditions in eliminating the cracks and forming the pores of in the five stages were proposed. Mercury porosimetry provided a description of pore diameter ranging from 10 to 10000 nm and open porosity of 38.78 %. 展开更多
关键词 porous A1-Cu alloy non-aqueous gelcasting process conditions CRACK PORE
下载PDF
Effects of ball milling time on porous Ti-3Ag alloy and its apatite-inducing abilities 被引量:3
4
作者 侯乐干 李莉 郑玉峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1356-1366,共11页
Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities wer... Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti-3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability. 展开更多
关键词 porous Ti-3Ag alloy hydrothermal treatment apatite-inducing ability ball milling time
下载PDF
A comparative study of the role of solute,potent particles and ultrasonic treatment during solidification of pure Mg,Mg-Zn and Mg-Zr alloys 被引量:7
5
作者 Nagasivamuni Balasubramani Gui Wang +2 位作者 Mark A.Easton David H.St John Matthew S.Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期829-839,共11页
Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinem... Ultrasonic treatment(UST)applied during the solidification of pure Mg,eutectic(Mg-Zn)and peritectic(Mg-Zr)alloys was investigated in order to explore the grain refinement mechanisms.Temperature dependent grain refinement is observed in pure Mg where decreasing the superheat temperature(at which UST is applied from above the melting temperature,TM)from 100℃to 40℃produces significant refinement with a uniform grain structure.The presence of solute reduces the temperature dependence of the UST refinement and excellent grain refinement is obtained regardless of the superheat temperature(100℃or 40℃)and even with the use of preheated sonotrode in the Mg-6 wt.%Zn alloy.A further improvement in grain refinement is achieved when the alloy contains potent particles that introduce additional nucleation of grains in Mg-0.5 and 1.0 wt.%Zr alloys(producing an average grain size of≤100μm).At 40℃superheat,UST of Mg-Zn alloys produces excellent refinement(average grain size<200μm)with non-dendritic grains,which is normally achieved only with the addition of grain refining master alloy in the as-cast condition.The enhanced refinement observed in the eutectic alloy is explained through the undercooling imposed by a relatively cold sonotrode combined with high frequency vibrations and acoustic streaming.The advantages of using a cold sonotrode,a low superheat and solute are demonstrated for achieving significant refinement during solidification of Mg alloys under UST without or with a lower addition of grain refining master alloys. 展开更多
关键词 Grain refinement mg-zn alloy Mg-Zr alloy Ultrasonic treatment Interdependence Model SOLIDIFICATION
下载PDF
Influence of alloying elements on hot tearing susceptibility of Mg-Zn alloys based on thermodynamic calculation and experimental 被引量:6
6
作者 Zhenzhen Yang Ke Wang +4 位作者 Penghuai Fu Liming Peng Bin Hu Ming Liu Anil K.Sachdev 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期44-51,共8页
Based on the hot tearing index|△T/△(fs)^(0.5)|recently proposed by Kou and the thermodynamic calculations of Pandat software,Al,Cu,and Mn elements were picked up and their influence on hot tearing susceptibility of ... Based on the hot tearing index|△T/△(fs)^(0.5)|recently proposed by Kou and the thermodynamic calculations of Pandat software,Al,Cu,and Mn elements were picked up and their influence on hot tearing susceptibility of Mg-x Zn(x=6,8,10,wt%)alloys was studied by experiments.The results indicate that Al addition can significantly reduce the hot tearing susceptibility of Mg-Zn alloys.Either 0.5Cu or 0.3Mn addition individually can reduce the HTS of the Mg-6Zn-(1,4)Al alloys,while adding together increases the susceptibility.The addition of 0.5Cu and 0.3Mn both individually and together increases the HTS of Mg-8/10Zn-1Al alloys.Based on the experimental and calculation results,the index can be modified to|△T/△(fs)^(0.5)|(d)^(2)for more accurate prediction on the hot tearing resistance of Mg-Zn based alloys.Grain refinement significantly improves the hot tearing resistance of Mg-Zn based alloys. 展开更多
关键词 Hot tearing susceptibility mg-zn alloying element Thermodynamic calculation Grain size
下载PDF
A comparison study of Ce/La and Ca microalloying on the bio-corrosion behaviors of extruded Mg-Zn alloys 被引量:9
7
作者 J.H.Chu L.B.Tong +4 位作者 Z.H.Jiang D.N.Zou Q.J.Wang S.F.Liu H.J.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1269-1280,共12页
The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or... The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future. 展开更多
关键词 Extruded mg-zn alloy Ca and Ce/La microalloying Microstructure evolution Bio-corrosion behaviors
下载PDF
Investigation of dry sliding wear properties of multi-directional forged Mg-Zn alloys 被引量:5
8
作者 S.Ramesh Gajanan Anne +2 位作者 H.Shivananda Nayaka Sandeep Sahu M.R.Ramesh 《Journal of Magnesium and Alloys》 SCIE 2019年第3期444-455,共12页
Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wea... Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wear behavior of samples was analyzed at loads of ION and 20 N,with sliding distances of 2000m and 4000m,at a sliding velocity of 3m/s.Microstructures of worn samples were observed under scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and x-ray diffraction(XRD)and the results were analyzed.Mechanical properties were evaluated using microhardness test.After 5 passes of MDF,the average grain size was found to be 30±4p m,22±3 pm,and 18±3 pm,in Mg-2%Zn,Mg-4%Zn,and Mg-6%Zn alloys,respectively,with significant improvement in hardness in all cases.Wear resistance was improved after MDF processing,as well as,with increment in Zn content in Mg alloy.However,it decreased when the load and the sliding distance increased.Worn surface exhibited ploughing,delamination,plastic deformation,and wear debris along sliding direction,and abrasive wear was found to be the main mechanism. 展开更多
关键词 Multi-directional forging mg-zn alloy MICROHARDNESS WEAR Coefficient of friction
下载PDF
Ultrafine nano-scale Cu_(2)Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries 被引量:4
9
作者 Dan Wang Qun Ma +3 位作者 Kang-hui Tian Chan-Qin Duan Zhi-yuan Wang Yan-guo Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1666-1674,共9页
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for... Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications. 展开更多
关键词 copper-antimony alloy ANODE porous carbon potassium-ion batteries sodium-ion batteries
下载PDF
Preparation and characterization of porous NiTi alloys synthesized by microwave sintering using Mg space holder 被引量:5
10
作者 Tao LAI Ji-lin XU +5 位作者 Qi-fei XIAO Yun-xiang TONG Jun HUANG Jian-ping ZHANG Jun-ming LUO Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期485-498,共14页
To obtain the lightweight,high strength,and high damping capacity porous NiTi alloys,the microwave sintering coupled with the Mg space holder technique was employed to prepare the porous NiTi alloys.The microstructure... To obtain the lightweight,high strength,and high damping capacity porous NiTi alloys,the microwave sintering coupled with the Mg space holder technique was employed to prepare the porous NiTi alloys.The microstructure,mechanical properties,phase transformation behavior,superelasticity,and damping capacity of the porous NiTi alloys were investigated.The results show that the porous NiTi alloys are mainly composed of the B2 NiTi phase with a few B19'NiTi phase as the sintering temperature is lower than or equal to 900℃.With increasing the sintering temperature,the porosities of the porous NiTi alloys gradually decrease and the compressive strength increases first,reaching the maximum value at 900℃,and then decreases.With increasing the Mg content from 1 wt.%to 7 wt.%,the porosities of the porous NiTi alloys increase from 37.8%to 47.1%,while the compressive strength decreases from 2058 to 1146 MPa.Compared with the NH4HCO3 space holder,the phase transformation behavior of the porous NiTi alloys prepared with Mg space holder changes,and all of the compressive strength,superelasticity,shape memory effect and damping capacity are greatly improved. 展开更多
关键词 porous NiTi alloy microwave sintering Mg space holder SUPERELASTICITY damping capacity
下载PDF
Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds 被引量:4
11
作者 J.Dong N.Tümer +5 位作者 M.A.Leeflang P.Taheri L.E.Fratila-Apachitei J.M.C.Mol A.A.Zadpoor J.Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2491-2509,共19页
Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes.The recent progress in additive manufacturing(AM) has prompted its application to fabricate Mg scaffol... Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes.The recent progress in additive manufacturing(AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures.Extrusionbased AM,followed by debinding and sintering,has been recently demonstrated as a powerful approach to fabricating such Mg scaffolds,which can avoid some crucial problems encountered when applying powder bed fusion AM techniques.However,such pure Mg scaffolds exhibit a too high rate of in vitro biodegradation.In the present research,alloying through a pre-alloyed Mg-Zn powder was ultilized to enhance the corrosion resistance and mechanical properties of AM geometrically ordered Mg-Zn scaffolds simultaneously.The in vitro biodegradation behavior,mechanical properties,and electrochemical response of the fabricated Mg-Zn scaffolds were evaluated.Moreover,the response of preosteoblasts to these scaffolds was systematically evaluated and compared with their response to pure Mg scaffolds.The Mg-Zn scaffolds with a porosity of 50.3% and strut density of 93.1% were composed of the Mg matrix and MgZn2second phase particles.The in vitro biodegradation rate of the Mg-Zn scaffolds decreased by 81% at day 1,as compared to pure Mg scaffolds.Over 28 days of static immersion in modified simulated body fluid,the corrosion rate of the Mg-Zn scaffolds decreased from 2.3± 0.9 mm/y to 0.7±0.1 mm/y.The yield strength and Young’s modulus of the Mg-Zn scaffolds were about 3 times as high as those of pure Mg scaffolds and remained within the range of those of trabecular bone throughout the biodegradation tests.Indirect culture of MC3T3-E1 preosteoblasts in Mg-Zn extracts indicated favorable cytocompatibility.In direct cell culture,some cells could spread and form filopodia on the surface of the Mg-Zn scaffolds.Overall,this study demonstrates the great potential of the extrusion-based AM Mg-Zn scaffolds to be further developed as biodegradable bone-substituting biomaterials. 展开更多
关键词 Additive manufacturing Material extrusion Magnesium-zinc alloy porous scaffold BIODEGRADATION
下载PDF
In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition 被引量:2
12
作者 Z.S.SEYEDRAOUFI Sh.MIRDAMADI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4018-4027,共10页
The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse ele... The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds. 展开更多
关键词 porous mg-zn scaffold hydroxyapatite coating pulse electrodeposition BIODEGRADABILITY BIOCOMPATIBILITY
下载PDF
Oxidation behavior and mechanism of porous nickel-based alloy between 850 and 1000 °C 被引量:3
13
作者 Yan WANG Yong LIU +2 位作者 Hui-ping TANG Wei-jie LI Chao HAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1558-1568,共11页
The oxidation behavior and mechanism of a porous Ni?Cr?Al?Fe alloy in the temperature range from850to1000°Cwere investigated by optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectrosco... The oxidation behavior and mechanism of a porous Ni?Cr?Al?Fe alloy in the temperature range from850to1000°Cwere investigated by optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),X-raydiffraction(XRD)analyses and X-ray photoelectron spectroscopy(XPS).The results show that the oxidation kinetics at950and1000°C of this porous alloy is pseudo-parabolic type.Complex layers composed of external Cr2O3/NiCr2O4and internalα-Al2O3areformed on the surface of the oxidized porous alloys.γ?phases favor the formation of NiO/Cr2O3/NiCr2O4during the initial oxidation.Many fast diffusion paths contribute to the development of the oxide layers.The decrease of the open porosity and the permeabilitywith exposure time extending and temperature increasing can be controlled within a certain range. 展开更多
关键词 porous alloy high temperature oxidation KINETICS oxide layer DIFFUSION
下载PDF
Influence of heat treatment on microstructure and electrochemical behaviors of Mg-Zn binary alloys prepared by gas-phase alloying technique 被引量:2
14
作者 MA Jun NIU Li-bin +2 位作者 YAN Yu-ting GAO Chong WANG Xiao-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期762-771,共10页
Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.D... Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.Different from the traditional Mg-Zn alloys preparation methods,alloys prepared by gas-phase alloying have a large number of intermetallic compounds,such as MgZn,Mg7Zn3 and MgZn2.After solution treatment,the boundary of the eutectic disappeared and the size ofα-Mg increased from 100μm to 150μm.At the same time,the value of the resistance of charge transfer increased,which indicates that the resistance of the charge transfer and the corrosion resistance of the alloys increased.After artificial aging treatment,the distribution ofα-Mg was more uniform and its size was reduced to about 50μm,and there was new eutectic structure formed.The newly formed eutectic structure forms galvanic cells with the alloy matrix,which makes the corrosion resistance of the alloy weaken. 展开更多
关键词 gas-phase alloying mg-zn alloy heat treatment Ringer’s solution electrochemical behavior
下载PDF
Fabrication of lotus-type porous Mg−Mn alloys by metal/gas eutectic unidirectional solidification 被引量:3
15
作者 Can-xu ZHOU Yuan LIU +2 位作者 Hua-wei ZHANG Xiang CHEN Yan-xiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1524-1534,共11页
Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore di... Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure. 展开更多
关键词 porous material Mg-Mn alloy POROSITY Gasar process directional solidification
下载PDF
Role of Ag addition on microstructure,mechanical properties,corrosion behavior and biocompatibility of porous Ti-30 at%Ta shape memory alloys 被引量:4
16
作者 Mustafa Khaleel IBRAHIM Safaa Najah SAUD +1 位作者 Esah HAMZAH Engku Mohamad NAZIM 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3175-3187,共13页
In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron mi... In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications. 展开更多
关键词 porous xAg/Ti-Ta shape memory alloys(SMAs) microwave sintering process microstructure characteristics mechanical properties and corrosion behavior bioactivity
下载PDF
Preparation of porous Ta-10%Nb alloy scaffold and its in vitro biocompatibility evaluation using MC3T3-E1 cells 被引量:2
17
作者 Jing-lei MIAO Jue LIU +2 位作者 Hui-feng WANG Hai-lin YANG Jian-ming RUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期2053-2061,共9页
A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques.The porous Ta-10%Nb alloy offers the capability of processing a pore ... A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques.The porous Ta-10%Nb alloy offers the capability of processing a pore size of 300-600μm,a porosity of(68.0±0.41)%,and open porosity of(93.5±2.6)%.The alloy also shows desirable mechanical properties similar to those of cancellous bone with the elastic modulus and the comprehensive strength of(2.54±0.5)GPa and(83.43±2.5)MPa,respectively.The morphology of the pores in the porous Ta-Nb alloy shows a good interconnected three-dimension(3D)network open cell structure.It is also found that the rat MC3T3-E1 cell can well adhere,grow and proliferate on the porous Ta-Nb alloy.The interaction of the porous alloy on cells is attributed to its desirable pore structure,porosity and the great surface area.The advanced mechanical and biocompatible properties of the porous alloy indicate that this material has promising potential applications in tissue engineering. 展开更多
关键词 porous Ta-Nb alloy low elastic modulus pore structure in vitro evaluation
下载PDF
In-situ hydrothermal synthesis of Ni−MoO_(2)heterostructure on porous bulk NiMo alloy for efficient hydrogen evolution reaction 被引量:3
18
作者 Jian TANG Ji-lin XU +4 位作者 Liang-liang LI Yong-cun MA Zhi-guo YE Hong-yu LUO Jun-ming LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1598-1608,共11页
The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission tra... The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium. 展开更多
关键词 hydrogen evolution reaction Ni−MoO_(2) heterostructure powder metallurgy porous bulk electrocatalyst NiMo alloy
下载PDF
Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate 被引量:1
19
作者 Zhang Wen Li +1 位作者 Hong Li Hai-feng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期817-823,共7页
The spontaaleous infiltration aald wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using tile sessile drop metilod by continuous heating and holding for 1800 s at different temper... The spontaaleous infiltration aald wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using tile sessile drop metilod by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that tile Zr-based alloy melt could pastly infiltrate tile porous SiC substrate without pressure due to tile effect of capillary pressure. Wettability and infiltration rates increased witil increasing temperature, and interracial reaction products (ZrC0.7 and TiC) were detected in tile Zr-based alloy/SiC ceramic system, likely because of tile reaction of tile active elements Zr and Ti witil elemental C. Furtilelinore, tile redundant ele- ment Si diffused into tile alloy melt. 展开更多
关键词 spontaneous infiltration wetting interface porous SiC Zr-based alloy
下载PDF
Pore structure and mechanical properties of directionally solidi ed porous aluminum alloys 被引量:1
20
作者 Komissarchuk Olga Xu Zhengbin +2 位作者 Hao Hai Zhang Xinglu Vladimir Karpov 《China Foundry》 SCIE CAS 2014年第1期1-7,共7页
Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional s... Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidif ication. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidif ication front are usually formed. In the research, the effects of processing parameters(saturation pressure, solidif ication pressure, temperature, and holding time) on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the f inal pore structure and the solidif ication pressure, as well as the inf luences of Mg quantity on the pore size, porosity and mechanical properties of AlMg alloy were investigated. The results show that a higher pressure of solidif ication tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption. 展开更多
关键词 porous aluminum alloys GASAR solidification pressure pore structure directional solidification
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部