Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti...Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.展开更多
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm~2,along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm2 at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm2 for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the func...TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.展开更多
By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show th...By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show that the pore structure is primarily dependent on the solidification mode(planar,columnar cellular,columnar dendritic,equiaxed dendritic),which is controlled by the solidification process.By numerical simulation,it is noted that along with solidification,the solidification mode of the alloy transforms from cellular to columnar dendritic and finally to equiaxed dendritic.Through increasing melt temperature and mold preheating,the range of equiaxed dendrite could be decreased,which helps to extend the region of oriented pore structure.展开更多
Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of th...Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of the fabricated alloys were intensively studied. It is found that the apparent density of alloys decreases with increasing the Cu content, the porous Ti50Ni40Cu10 alloy exhibits wide endothermic and exothermic peaks arisen from the hysteresis of martensitic transformations, while the porous Ti50Ni30Cu20 alloy shows much stronger and narrower endothermic and exothermic peaks owing to the B2-B19 transformation taking place easily. Moreover, the porous Ti50Ni40Cu10 alloy shows a lower shape recovery rate than the porous Ti50Ni50 alloy, while the porous Ti50Ni30Cu20 alloy behaves reversely. In addition, the damping capacity (or internal friction, IF) of the porous TiNiCu alloys increases with increasing the Cu content. The porous Ti50Ni30Cu20 alloy has very high equivalent internal friction, with the maximum equivalent internal friction value five times higher than that of the porous Ti50Ni50 alloy.展开更多
The porous A1-Cu alloy was prepared by the gelcasting process. And the effects of gelcasting conditions, such as monomer, the volume ratio of cross-linker and monomer, dispersant and redox initiating system on the hei...The porous A1-Cu alloy was prepared by the gelcasting process. And the effects of gelcasting conditions, such as monomer, the volume ratio of cross-linker and monomer, dispersant and redox initiating system on the height, gelling time and the quality of green body were investigated. (It was found that the dispersant and monomer played significant roles in the height and quality of green bodies, respectively.) The optimal conditions were 10% monomer, 2% cross-linker, 0.2% initiator (volume fraction), and 1.2 g dispersant, in which the green body exhibited the best quality. The mechanisms of process conditions in eliminating the cracks and forming the pores of in the five stages were proposed. Mercury porosimetry provided a description of pore diameter ranging from 10 to 10000 nm and open porosity of 38.78 %.展开更多
Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities wer...Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti-3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability.展开更多
To obtain the lightweight,high strength,and high damping capacity porous NiTi alloys,the microwave sintering coupled with the Mg space holder technique was employed to prepare the porous NiTi alloys.The microstructure...To obtain the lightweight,high strength,and high damping capacity porous NiTi alloys,the microwave sintering coupled with the Mg space holder technique was employed to prepare the porous NiTi alloys.The microstructure,mechanical properties,phase transformation behavior,superelasticity,and damping capacity of the porous NiTi alloys were investigated.The results show that the porous NiTi alloys are mainly composed of the B2 NiTi phase with a few B19'NiTi phase as the sintering temperature is lower than or equal to 900℃.With increasing the sintering temperature,the porosities of the porous NiTi alloys gradually decrease and the compressive strength increases first,reaching the maximum value at 900℃,and then decreases.With increasing the Mg content from 1 wt.%to 7 wt.%,the porosities of the porous NiTi alloys increase from 37.8%to 47.1%,while the compressive strength decreases from 2058 to 1146 MPa.Compared with the NH4HCO3 space holder,the phase transformation behavior of the porous NiTi alloys prepared with Mg space holder changes,and all of the compressive strength,superelasticity,shape memory effect and damping capacity are greatly improved.展开更多
The oxidation behavior and mechanism of a porous Ni?Cr?Al?Fe alloy in the temperature range from850to1000°Cwere investigated by optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectrosco...The oxidation behavior and mechanism of a porous Ni?Cr?Al?Fe alloy in the temperature range from850to1000°Cwere investigated by optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),X-raydiffraction(XRD)analyses and X-ray photoelectron spectroscopy(XPS).The results show that the oxidation kinetics at950and1000°C of this porous alloy is pseudo-parabolic type.Complex layers composed of external Cr2O3/NiCr2O4and internalα-Al2O3areformed on the surface of the oxidized porous alloys.γ?phases favor the formation of NiO/Cr2O3/NiCr2O4during the initial oxidation.Many fast diffusion paths contribute to the development of the oxide layers.The decrease of the open porosity and the permeabilitywith exposure time extending and temperature increasing can be controlled within a certain range.展开更多
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for...Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.展开更多
Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore di...Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.展开更多
In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron mi...In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.展开更多
A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques.The porous Ta-10%Nb alloy offers the capability of processing a pore ...A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques.The porous Ta-10%Nb alloy offers the capability of processing a pore size of 300-600μm,a porosity of(68.0±0.41)%,and open porosity of(93.5±2.6)%.The alloy also shows desirable mechanical properties similar to those of cancellous bone with the elastic modulus and the comprehensive strength of(2.54±0.5)GPa and(83.43±2.5)MPa,respectively.The morphology of the pores in the porous Ta-Nb alloy shows a good interconnected three-dimension(3D)network open cell structure.It is also found that the rat MC3T3-E1 cell can well adhere,grow and proliferate on the porous Ta-Nb alloy.The interaction of the porous alloy on cells is attributed to its desirable pore structure,porosity and the great surface area.The advanced mechanical and biocompatible properties of the porous alloy indicate that this material has promising potential applications in tissue engineering.展开更多
The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission tra...The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.展开更多
The spontaaleous infiltration aald wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using tile sessile drop metilod by continuous heating and holding for 1800 s at different temper...The spontaaleous infiltration aald wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using tile sessile drop metilod by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that tile Zr-based alloy melt could pastly infiltrate tile porous SiC substrate without pressure due to tile effect of capillary pressure. Wettability and infiltration rates increased witil increasing temperature, and interracial reaction products (ZrC0.7 and TiC) were detected in tile Zr-based alloy/SiC ceramic system, likely because of tile reaction of tile active elements Zr and Ti witil elemental C. Furtilelinore, tile redundant ele- ment Si diffused into tile alloy melt.展开更多
The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show th...The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show that the addition of Mo hinders the densification of Ti-Mo alloy due to the low diffusion rate of Mo atoms in β-Ti matrix, and the increase of Mo content worsens the sinterability of Ti-Mo alloy. However, the addition of Mo can also refine the microstructure of Ti-Mo alloy greatly, and raising sintering temperature can effectively increase the alloy density without grain coarsening. When neglecting the relative density factor, the addition of Mo refines the microstructure, and improves the mechanical strength by Hall-Petch relationship.展开更多
Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional s...Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidif ication. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidif ication front are usually formed. In the research, the effects of processing parameters(saturation pressure, solidif ication pressure, temperature, and holding time) on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the f inal pore structure and the solidif ication pressure, as well as the inf luences of Mg quantity on the pore size, porosity and mechanical properties of AlMg alloy were investigated. The results show that a higher pressure of solidif ication tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.展开更多
Lotus-type porous Mg-1 wt.% Mn-xZn(x = 0 wt.%, 1 wt.% and 2 wt.%) alloys were fabricated by metal–gas eutectic unidirectional solidification(the Gasar method). Effects of Zn addition and the fabrication process on th...Lotus-type porous Mg-1 wt.% Mn-xZn(x = 0 wt.%, 1 wt.% and 2 wt.%) alloys were fabricated by metal–gas eutectic unidirectional solidification(the Gasar method). Effects of Zn addition and the fabrication process on the porosity, pore diameter and microstructure of the porous Mg alloys were investigated. Zn addition from 0 wt.% to 1 wt.% and 2 wt.% to the Mg-1 wt.% Mn alloy decreased the porosity from41.2% to 36.9% and 35.8%, respectively, with the same preparation processing. In the lotus-type porous Mg-1 wt.%Mn-1 wt.%Zn alloy, the porosities and average pore diameters changed with hydrogen pressures from 0.1 to 0.6 MPa. Conical areas that were rich in elemental Zn existed below the directional pores, and precipitates were also found in conical areas. Homogeneous directional pores existed in the lower portion of the ingot, and coarser directional pores and finer non-directional pores formed in the upper part. A theoretical model of the change in porosity with hydrogen pressure agreed well with the calculated porosities in the steady bubble growing area. The compressive strength of Mg-1 wt.Mn-Zn alloys can be increased by around 20 MPa through rising Zinc content from 1 wt.% to 2 wt.%, which basically linearly decline with the increasing of porosity. This work provides the basis for Gasar Mg-Zn-Mn alloy synthesis in biological applications and shows that the Gasar process is a promising method to fabricate Mg-Zn-Mn alloys with directional pores and a controllable pore structure.展开更多
The porous NiTi(pNiTi)samples were produced by sintering evaporation using Ti−50.8Ni(at.%)gasatomized powders.The samples were analyzed by metallographic microscope and X-ray dispersive spectroscopy(XRD).A comparison ...The porous NiTi(pNiTi)samples were produced by sintering evaporation using Ti−50.8Ni(at.%)gasatomized powders.The samples were analyzed by metallographic microscope and X-ray dispersive spectroscopy(XRD).A comparison of nickel(Ni)release and cytocompatibility between pNiTi and dense NiTi(dNiTi)was made.The results showed that the pNiTi has good mechanical properties.Ni releases from pNiTi in vitro and in vivo are more serious than those form dNiTi.The proliferation and differentiation of cells cultured with the pNiTi extracting liquid are significantly worse,and the rate of early apoptosis is higher.In conclusion,pNiTi is mechanically similar to bone,but pNiTi releases more Ni and interferes with cell proliferation and differentiation.A significantly cautious approach should be adopted when using it as a medical implant.展开更多
Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with...Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.展开更多
基金the financial support from the National Natural Science Foundation of China (Nos.52204389,U19A2084 and 52234009)the National Key Research and Development Program (No.2022YFE0122000)Program for the Central University Youth Innovation Team。
文摘Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm~2,along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm2 at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm2 for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
基金Project (50671067) supported by the National Natural Science Foundation of ChinaProject (09JC1407200) supported by the Science and Technology Committee of Shanghai, China
文摘TiNi and Ti-based shape memory alloys were processed by equal channel angular pressing (ECAP) at 673-773 K along Bc route to obtain ultrafine grains for increasing the strength of parent phase and improving the functional properties. The effects of both thermodynamically stable and metastable second phases on the mechanical properties and martensitic transformations of these alloys were investigated. It is found that thermodynamically stable Ti2Ni phase has no effect on martensitic transformation and superelasticity of Ti-rich TiNi alloy, thermodynamically stable α phase is harmful for ductility of Ti-Mo-Nb-V-Al alloy, but metastable Ti3Ni4 phase is effective for R phase transformation, martensitic transformation and superelasticity of Ni-rich TiNi alloy. The mechanisms of the second phases on the martensitic transformations and mechanical properties were discussed.
基金Project(U0837603)supported by the NSFC-Yunnan Joint Foundation of ChinaProject(2092017)supported by the Natural Science Foundation of Beijing,China
文摘By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show that the pore structure is primarily dependent on the solidification mode(planar,columnar cellular,columnar dendritic,equiaxed dendritic),which is controlled by the solidification process.By numerical simulation,it is noted that along with solidification,the solidification mode of the alloy transforms from cellular to columnar dendritic and finally to equiaxed dendritic.Through increasing melt temperature and mold preheating,the range of equiaxed dendrite could be decreased,which helps to extend the region of oriented pore structure.
基金Projects(50871039,51205135)supported by the National Natural Science Foundation of ChinaProject(S2011040001436)supported by the Guangdong Provincial Natural Science Foundation,China
文摘Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of the fabricated alloys were intensively studied. It is found that the apparent density of alloys decreases with increasing the Cu content, the porous Ti50Ni40Cu10 alloy exhibits wide endothermic and exothermic peaks arisen from the hysteresis of martensitic transformations, while the porous Ti50Ni30Cu20 alloy shows much stronger and narrower endothermic and exothermic peaks owing to the B2-B19 transformation taking place easily. Moreover, the porous Ti50Ni40Cu10 alloy shows a lower shape recovery rate than the porous Ti50Ni50 alloy, while the porous Ti50Ni30Cu20 alloy behaves reversely. In addition, the damping capacity (or internal friction, IF) of the porous TiNiCu alloys increases with increasing the Cu content. The porous Ti50Ni30Cu20 alloy has very high equivalent internal friction, with the maximum equivalent internal friction value five times higher than that of the porous Ti50Ni50 alloy.
基金Project(51274041) supported by the National Natural Science Foundation of China
文摘The porous A1-Cu alloy was prepared by the gelcasting process. And the effects of gelcasting conditions, such as monomer, the volume ratio of cross-linker and monomer, dispersant and redox initiating system on the height, gelling time and the quality of green body were investigated. (It was found that the dispersant and monomer played significant roles in the height and quality of green bodies, respectively.) The optimal conditions were 10% monomer, 2% cross-linker, 0.2% initiator (volume fraction), and 1.2 g dispersant, in which the green body exhibited the best quality. The mechanisms of process conditions in eliminating the cracks and forming the pores of in the five stages were proposed. Mercury porosimetry provided a description of pore diameter ranging from 10 to 10000 nm and open porosity of 38.78 %.
基金Projects(2012CB619102,2012CB619100)supported by the National Basic Research Program of ChinaProjects(2011AA030101,2011AA030103)supported by the High-tech Research and Development Program of China+1 种基金Projects(HEUCFZ1017,HEUCFR1020)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(ZD201012)supported by the Natural Science Foundation of Heilongjiang Province,China
文摘Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti-3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51101085,51764041,51704167)the Aeronautical Science Foundation of China(2015ZF56027,2016ZF56020)+2 种基金the Opening Project of National Engineering Research Center for Powder Metallurgy of Titanium&Rare Metals,China(2019004)the Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province,China(20171BCD40003)the Jiangxi Provincial Natural Science Foundation,China(20202ACBL214011).
文摘To obtain the lightweight,high strength,and high damping capacity porous NiTi alloys,the microwave sintering coupled with the Mg space holder technique was employed to prepare the porous NiTi alloys.The microstructure,mechanical properties,phase transformation behavior,superelasticity,and damping capacity of the porous NiTi alloys were investigated.The results show that the porous NiTi alloys are mainly composed of the B2 NiTi phase with a few B19'NiTi phase as the sintering temperature is lower than or equal to 900℃.With increasing the sintering temperature,the porosities of the porous NiTi alloys gradually decrease and the compressive strength increases first,reaching the maximum value at 900℃,and then decreases.With increasing the Mg content from 1 wt.%to 7 wt.%,the porosities of the porous NiTi alloys increase from 37.8%to 47.1%,while the compressive strength decreases from 2058 to 1146 MPa.Compared with the NH4HCO3 space holder,the phase transformation behavior of the porous NiTi alloys prepared with Mg space holder changes,and all of the compressive strength,superelasticity,shape memory effect and damping capacity are greatly improved.
基金Project(51134003)supported by the National Natural Science Foundation of China
文摘The oxidation behavior and mechanism of a porous Ni?Cr?Al?Fe alloy in the temperature range from850to1000°Cwere investigated by optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),X-raydiffraction(XRD)analyses and X-ray photoelectron spectroscopy(XPS).The results show that the oxidation kinetics at950and1000°C of this porous alloy is pseudo-parabolic type.Complex layers composed of external Cr2O3/NiCr2O4and internalα-Al2O3areformed on the surface of the oxidized porous alloys.γ?phases favor the formation of NiO/Cr2O3/NiCr2O4during the initial oxidation.Many fast diffusion paths contribute to the development of the oxide layers.The decrease of the open porosity and the permeabilitywith exposure time extending and temperature increasing can be controlled within a certain range.
基金financially supported by the National Natural Science Foundation of China(Nos.51871046,51902046,52071073,51874079,51571054,51771046,and 51674068)the Natural Science Foundation of Liaoning Province,China(No.201602257)+2 种基金Natural Science Foundation of Hebei Province,China(Nos.E2019501097,E2018501091,E2020501004)the Science and Technology Project of Hebei Province,China(No.15271302D)the Fundamental Research Funds for the Central Universities,China(Nos.N182304017,N182304015,N172302001,N172304044).
文摘Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.
基金Project(51771101)supported by the National Natural Science Foundation of China。
文摘Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.
基金Project(Q.J130000.2524.12H60)supported by the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia。
文摘In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.
基金Projects(51404302,51274247) supported by the National Natural Science Foundation of ChinaProject supported by "125 Talent Project" of the Third Xiangya Hospital of Central South University,China
文摘A highly porous Ta-10%Nb alloy was successfully prepared for tissue engineering via the methods of the sponge impregnation and sintering techniques.The porous Ta-10%Nb alloy offers the capability of processing a pore size of 300-600μm,a porosity of(68.0±0.41)%,and open porosity of(93.5±2.6)%.The alloy also shows desirable mechanical properties similar to those of cancellous bone with the elastic modulus and the comprehensive strength of(2.54±0.5)GPa and(83.43±2.5)MPa,respectively.The morphology of the pores in the porous Ta-Nb alloy shows a good interconnected three-dimension(3D)network open cell structure.It is also found that the rat MC3T3-E1 cell can well adhere,grow and proliferate on the porous Ta-Nb alloy.The interaction of the porous alloy on cells is attributed to its desirable pore structure,porosity and the great surface area.The advanced mechanical and biocompatible properties of the porous alloy indicate that this material has promising potential applications in tissue engineering.
基金the financial supports from the National Natural Science Foundation of China(Nos.52161040,51862026)the Natural Science Foundation of Jiangxi Province,China(Nos.20202ACBL214011,20192ACBL21048)the Aeronautical Science Foundation of China(No.2017ZF56027)。
文摘The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.
基金the financial support from the National Natural Science Foundation of China(No.51401131)the China's Manned Space Station Project(No.TGJZ800–2–RW024)
文摘The spontaaleous infiltration aald wetting behaviors of a Zr-based alloy melt on porous a SiC ceramic plate were studied using tile sessile drop metilod by continuous heating and holding for 1800 s at different temperatures in a high-vacuum furnace. The results showed that tile Zr-based alloy melt could pastly infiltrate tile porous SiC substrate without pressure due to tile effect of capillary pressure. Wettability and infiltration rates increased witil increasing temperature, and interracial reaction products (ZrC0.7 and TiC) were detected in tile Zr-based alloy/SiC ceramic system, likely because of tile reaction of tile active elements Zr and Ti witil elemental C. Furtilelinore, tile redundant ele- ment Si diffused into tile alloy melt.
文摘The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show that the addition of Mo hinders the densification of Ti-Mo alloy due to the low diffusion rate of Mo atoms in β-Ti matrix, and the increase of Mo content worsens the sinterability of Ti-Mo alloy. However, the addition of Mo can also refine the microstructure of Ti-Mo alloy greatly, and raising sintering temperature can effectively increase the alloy density without grain coarsening. When neglecting the relative density factor, the addition of Mo refines the microstructure, and improves the mechanical strength by Hall-Petch relationship.
基金financially supported by Liaoning BaiQianWan Talents Program(No.2011921065)
文摘Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidif ication. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidif ication front are usually formed. In the research, the effects of processing parameters(saturation pressure, solidif ication pressure, temperature, and holding time) on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the f inal pore structure and the solidif ication pressure, as well as the inf luences of Mg quantity on the pore size, porosity and mechanical properties of AlMg alloy were investigated. The results show that a higher pressure of solidif ication tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.
基金National Natural Science Foundation of China(51771101)。
文摘Lotus-type porous Mg-1 wt.% Mn-xZn(x = 0 wt.%, 1 wt.% and 2 wt.%) alloys were fabricated by metal–gas eutectic unidirectional solidification(the Gasar method). Effects of Zn addition and the fabrication process on the porosity, pore diameter and microstructure of the porous Mg alloys were investigated. Zn addition from 0 wt.% to 1 wt.% and 2 wt.% to the Mg-1 wt.% Mn alloy decreased the porosity from41.2% to 36.9% and 35.8%, respectively, with the same preparation processing. In the lotus-type porous Mg-1 wt.%Mn-1 wt.%Zn alloy, the porosities and average pore diameters changed with hydrogen pressures from 0.1 to 0.6 MPa. Conical areas that were rich in elemental Zn existed below the directional pores, and precipitates were also found in conical areas. Homogeneous directional pores existed in the lower portion of the ingot, and coarser directional pores and finer non-directional pores formed in the upper part. A theoretical model of the change in porosity with hydrogen pressure agreed well with the calculated porosities in the steady bubble growing area. The compressive strength of Mg-1 wt.Mn-Zn alloys can be increased by around 20 MPa through rising Zinc content from 1 wt.% to 2 wt.%, which basically linearly decline with the increasing of porosity. This work provides the basis for Gasar Mg-Zn-Mn alloy synthesis in biological applications and shows that the Gasar process is a promising method to fabricate Mg-Zn-Mn alloys with directional pores and a controllable pore structure.
文摘The porous NiTi(pNiTi)samples were produced by sintering evaporation using Ti−50.8Ni(at.%)gasatomized powders.The samples were analyzed by metallographic microscope and X-ray dispersive spectroscopy(XRD).A comparison of nickel(Ni)release and cytocompatibility between pNiTi and dense NiTi(dNiTi)was made.The results showed that the pNiTi has good mechanical properties.Ni releases from pNiTi in vitro and in vivo are more serious than those form dNiTi.The proliferation and differentiation of cells cultured with the pNiTi extracting liquid are significantly worse,and the rate of early apoptosis is higher.In conclusion,pNiTi is mechanically similar to bone,but pNiTi releases more Ni and interferes with cell proliferation and differentiation.A significantly cautious approach should be adopted when using it as a medical implant.
基金Project(IRT_14R48)supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of ChinaProjects(51271158,51272158,51401175,51504213)supported by the National Natural Science Foundation of China+2 种基金Project([2009]17)supported by the Changjiang Scholar Incentive Program,ChinaProject(CX2015B224)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2015WK3021)supported by the Hunan Provincial Key Research Program,China
文摘Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.