期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pore structure and mechanical properties of directionally solidi ed porous aluminum alloys 被引量:1
1
作者 Komissarchuk Olga Xu Zhengbin +2 位作者 Hao Hai Zhang Xinglu Vladimir Karpov 《China Foundry》 SCIE CAS 2014年第1期1-7,共7页
Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional s... Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidif ication. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidif ication front are usually formed. In the research, the effects of processing parameters(saturation pressure, solidif ication pressure, temperature, and holding time) on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the f inal pore structure and the solidif ication pressure, as well as the inf luences of Mg quantity on the pore size, porosity and mechanical properties of AlMg alloy were investigated. The results show that a higher pressure of solidif ication tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption. 展开更多
关键词 porous aluminum alloys GASAR solidification pressure pore structure directional solidification
下载PDF
SIMULATION OF LIQUID ALUMINIUM INFILTRATION IN POROUS MEDIUM 被引量:1
2
作者 H. Yu, Z.X. Lin and Y.H. Zhou 1) Department of Materials Engineering, Nanchang Institute of Aeronautical Technology, Nanchang 330034, China 2) The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University,Xi’an 710072, Chin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期674-681,共8页
Based on the principle of infiltration mechanics in porous medium, high Reynolds number infiltration of liquid aluminum in porous medium has been investigated. Combined with the test results of hydraulic simulation, ... Based on the principle of infiltration mechanics in porous medium, high Reynolds number infiltration of liquid aluminum in porous medium has been investigated. Combined with the test results of hydraulic simulation, the mathematical model of the high Reynolds number infiltration of liquid aluminum in porous medium has been established, and it is found that infiltration is characterized by its second order nonlinear. The calculated results based on the model are in good agreement with those of the hydraulic simulation and the aluminum alloy infiltration. The way of high speed infiltration under medium pressure has been put forward to fabricate porous aluminum alloy with thin holes of 0.4mm diameter. 展开更多
关键词 INFILTRATION SIMULATION porous aluminum alloy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部