Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,a...Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,and the specific attenuation mechanism is still ambiguous.Therefore,in this work,a novel ultra-light egg-derived porous carbon foam(EDCF)structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process.Based on an equivalent substitute strategy,the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres.As a primary attenuation mode,the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band,and the value is dominated by polarization loss in X band and Ku band,which is obviously greater than that of conduction loss.Furthermore,in all samples,the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%,covering the whole Ku band.Meanwhile,the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss(RL_(min))of−58.08 dB at 16.86 GHz while the thickness is 1.27 mm.The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.展开更多
In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical por...In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles(Cr_(3)C_(2)@C/HPCF),in which the well-distributed conductive Cr_(3)C_(2) nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides(LiPSs).Test results show that the Cr_(3)C_(2)@C/HPCF based sulfur electrodes with 75 wt.%of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g^(−1) at 0.1 C(3.5 mg·cm^(−2)),and a reversible capacity can still maintain stability at 1,002.1 mAh·g^(−1) after 150 cycles.Even increasing the areal sulfur loading to 4 mg·cm^(−2),the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g^(−1) at 0.5 C with ultra-slow capacity decay rate of 0.075%per cycle during 500 cycles.Furthermore,the adsorption energy between the Cr_(3)C_(2) surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002199,52002200,52102106Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09+2 种基金the Natural Science Foundation of Shandong Province under Grant No.ZR2019BEM042,ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No.2020KJA004the Taishan Scholars Program of Shandong Province under No.ts201511034
文摘Three-dimensional(3D)ordered porous carbon is generally believed to be a promising electromagnetic wave(EMW)absorbing material.However,most research works targeted performance improvement of 3D ordered porous carbon,and the specific attenuation mechanism is still ambiguous.Therefore,in this work,a novel ultra-light egg-derived porous carbon foam(EDCF)structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process.Based on an equivalent substitute strategy,the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres.As a primary attenuation mode,the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band,and the value is dominated by polarization loss in X band and Ku band,which is obviously greater than that of conduction loss.Furthermore,in all samples,the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%,covering the whole Ku band.Meanwhile,the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss(RL_(min))of−58.08 dB at 16.86 GHz while the thickness is 1.27 mm.The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.
基金The authors appreciate support by the Natural Science Foundation of Anhui Province(No.1908085ME147)Projects of International Cooperation and Exchanges in Anhui Provincial Key Project of Research(No.202004b11020010)+2 种基金Shenzhen Basic Research Program(Nos.JCYJ20190808141611189,JCYJ20170818100134570,and JCYJ20160422091418366)Basic and applied basic research fund of Guangdong Province(No.2020A1515011018)we are grateful to Instrumental Analysis Center of Shenzhen University(Xili Campus)for the help with TEM,and thanks for technical support by Ceshigo Research Service Agency(www.ceshigo.com)for XAS,ACSTEM and DFT/MD.
文摘In this paper,we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries(LSBs),the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles(Cr_(3)C_(2)@C/HPCF),in which the well-distributed conductive Cr_(3)C_(2) nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides(LiPSs).Test results show that the Cr_(3)C_(2)@C/HPCF based sulfur electrodes with 75 wt.%of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g^(−1) at 0.1 C(3.5 mg·cm^(−2)),and a reversible capacity can still maintain stability at 1,002.1 mAh·g^(−1) after 150 cycles.Even increasing the areal sulfur loading to 4 mg·cm^(−2),the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g^(−1) at 0.5 C with ultra-slow capacity decay rate of 0.075%per cycle during 500 cycles.Furthermore,the adsorption energy between the Cr_(3)C_(2) surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.