期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of the Interfacial Transition Zone between Aggregate-Cement Paste by AC Impedance Spectroscopy 被引量:4
1
作者 孔丽娟 hou lirong +1 位作者 wang yuhua sun guowen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第4期865-871,共7页
Three different types and sizes of coarse aggregate were chosen,and the alternating current(AC) impedance of cement paste samples with and without aggregate was measured at different curing ages.Based on Song’s equ... Three different types and sizes of coarse aggregate were chosen,and the alternating current(AC) impedance of cement paste samples with and without aggregate was measured at different curing ages.Based on Song’s equivalent circuit model,the electrical properties from the AC impedance results were obtained,and the resistance of connected pores RCCP was used to characterize the microstructure of the interfacial transition zone(ITZ).The results show that the RCCP of concrete sample with aggregate is lower than that of cement paste sample,which indicates that the introduction of aggregate in cement paste makes the ITZ porous.Furthermore,for the same type of aggregate,an increase in particle size leads to a more porous ITZ,which accounts for the “water effect” and a larger aggregate would accumulate a thicker water film around it.In addition,for the same size of aggregate,the physical interaction between aggregate and cement paste is dominant in early age,and the microstructure of the ITZ around limestone aggregate is denser,which mainly depends on its rough surface and high water absorption.However,the microstructures of the ITZ around granite and basalt aggregates are denser in later age,which may be due to their higher chemical activity,and the chemical interaction between them and cement paste resulting in the generation of more hydrates.AC impedance spectroscopy thus proves to be powerful for evaluation of the microstructure of the ITZ. 展开更多
关键词 aggregate paste impedance hydration curing Paste limestone sizes characterize porous
下载PDF
An improved theoretical procedure for the pore-size analysis of activated carbon by gas adsorption 被引量:3
2
作者 Guodong Wang Jianchun Jiang +1 位作者 Kang Sun Jianzhong Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期551-559,共9页
Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosi... Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples. 展开更多
关键词 Non-local density functional theory Amorphous porous materials Pore size characterization Gas adsorption Adsorption integral equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部