This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie...Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy.展开更多
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff...Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were use...This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.展开更多
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a...A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings.展开更多
The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell w...The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.展开更多
The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth...The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications.展开更多
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m...To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.展开更多
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi...Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%.展开更多
Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperatu...Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.展开更多
The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, ...The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.展开更多
Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants ...Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize...The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.展开更多
Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree n...Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp...Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on.展开更多
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ...Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.展开更多
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high...Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”展开更多
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金the MICINN (Spain)(Projects PID2019-104778GB-I00, PID2020-115100GB-I00Excellence Unit “Maria de Maeztu” CEX2019-000919-M)+5 种基金the Royal Society of Chemistryfunded by Generalitat Valenciana(PROMETEU/2021/054 and SEJI/2020/034)the “Ramón y Cajal” program (RYC2019-027940-I)the Royal Society (RGSR1221390)Royal Society of Chemistry (R21-5119312833) for the funding.
文摘Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy.
基金the financial support from the National Natural Science Foundation of China(22090062,21922810,21825802,22138003,22108083,and 21725603)the Guangdong Pearl River Talents Program(2021QN02C8)+3 种基金the Science and Technology Program of Guangzhou(202201010118)Zhejiang Provincial Natural Science Foundation of China(LR20B060001)National Science Fund for Excellent Young Scholars(22122811)China Postdoctoral Science Foundation(2022M710123)。
文摘Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金This work was sponsored by the National Natural Science Foundation of China(No.52172029)the Natural Science Foundation of Henan(No.202300410473).
文摘This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability.
基金the financial support from the National Key Research and Development Program of China(Grant No.2017YFC1501003).
文摘A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings.
基金the research professional development project under the Science Achievement Scholarship of Thailand(SAST)for education financial support。
文摘The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity.
基金National Natural Science Foundation of China,Grant/Award Number:22162014 and 22162013Natural Science Foundation of Jiangxi Province of China,Grant/Award Number:20212ACB204009+1 种基金Sponsored Program for Academic and Technical Leaders of Major Disciplines of Jiangxi Province of China,Grant/Award Number:20212BCJL23059Doctoral Research Foundation Project of Tongren University,Grant/Award Number:trxyDH2204。
文摘The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications.
基金supported by the National Natural Science Foundation of China(grant number 51805086)the Natural Science Foundation of Fujian Province,China(grant number 2018J01763)。
文摘To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.
基金National Natural Science Foundation of China(Grant Nos.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province,China(Grant No.2019J01210)Health Education Joint Project of Fujian Province,China(Grant No.2019-WJ-01).
文摘Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%.
基金Project(2011AA06A105)supported by the National High-tech Research and Development Program of China
文摘Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost.
基金Project (2010FA32370) supported by The Ministry of Science and Technology of ChinaProject (2008WK3002) supported by Hunan Provincial Science and Technology DepartmentProject (20060390891) supported by the Postdoctoral Science Foundation of China
文摘The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.
基金Project(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar,ChinaProject(2009CB623406) supported by the National Basic Research Program of China
文摘Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.
文摘The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.
基金The National Basic Research Program of China(973Program)(No.2006CB601202)
文摘Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金This study was supported by the National Natural Science Foundation of China (21701182,51822208,21771187,21790050,and 21790051)the Frontier Science Research Project (QYZDB-SSW-JSC052)+1 种基金the Chinese Academy of Sciences,the Taishan Scholars Program of Shandong Province (tsqn201812111)Institute Research Project (QIBEBT ZZBS 201809).
文摘Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on.
基金supported by the National Natural Science Foundation of China (U1832136 and 21303038)Think-Tank Union Funds for Energy Storage (Grant No.JZ2016QTXM1097)+3 种基金Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (Grant No. RERU2016004)the Fundamental Research Funds for the Central Universities (JZ2016HGTA0690)Natural Science Foundation of Anhui province (1808085QE140)100 Talents Plan of Anhui
文摘Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries.
基金National Natural Science Foundation of China(No.51774331)Funds for Nationsl&Local Joint Engineering Research Center of Mineral Salt Deep Utilization(No.SF202103).
文摘Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”