A novel type of porous magnesium electrode with a stable 3D copper foam as current collectors for the organic magnesium-air battery was prepared by both amperostatic and pulsed electrodeposition of magnesium on copper...A novel type of porous magnesium electrode with a stable 3D copper foam as current collectors for the organic magnesium-air battery was prepared by both amperostatic and pulsed electrodeposition of magnesium on copper foam substrates in an electrolyte of 1 mol/L EtMgBr/THF solution, respectively. Optimal parameters of the pulsed electrodeposition were obtained using a bending cathode at the right angle. The surface morphology of the porous electrode was investigated by SEM, and the discharging performance of the porous magnesium electrode was detected by the chronoamperometric measurement. The electrochemical stability of 3D copper foam current collectors was examined by cyclic voltammetry, SEM and ICP-OES analyses. The results show that the rate capability of the porous magnesium electrode with a stable 3D copper foam as a current collector is better than that of the planar magnesium electrode, and the rate capability of the porous magnesium electrode prepared by the pulsed electrodeposition is superior to that of the porous magnesium electrode prepared by the amperostatic electrodeposition. The 3D structure of copper foam current collectors of the porous magnesium electrode could keep stable during the discharging process.展开更多
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics...In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts.展开更多
Implant-associated infection remains a difficult medical problem in orthopedic surgery. Therefore, the development of multifunctional bone implants for treating infection and regenerating lost bone tissue, which may b...Implant-associated infection remains a difficult medical problem in orthopedic surgery. Therefore, the development of multifunctional bone implants for treating infection and regenerating lost bone tissue, which may be a result of infection, is important. In the present study, we report the fabrication of enoxacin- loaded poly (lactic-co-glycolic acid) (PLGA) coating on porous magnesium scaffold (Enox-PLGA-Mg) which combine the favorable properties of magnesium, the antibacterial property and the effect of inhibition of osteoclastic bone resorption of enoxacin. The drug loaded PLGA coating of Mg scaffold enables higher drug loading efficiency (52%-56%) than non-coating enoxacin loaded Mg scaffold (Enox-Mg) (4%-5%). Enox- PLGA-Mg exhibits sustained drug release for more than 14 days, and this controlled release of enoxacin signifcantly inhibits bacterial adhesion and prevented biofilm formation by Staphylococcus epidermidis (ATCC35984) and Staphylococcus aureus (ATCC25923). Biocompatibility tests with Balb/c mouse embryo fibroblasts (Balb/c 3T3 cells) indicate that PLGA-Mg has better biocompatibility than Mg. Finally, we also demonstrate that Enox-PLCA-Mg extract potently inhibited osteoclast formation in vitro. Therefore, Enox- PLCA-Mg has the potential to be used as a multifunctional controlled drug delivery system bone scaffolds to prevent and/or treat orthopedic peri-implant infections.展开更多
AZ91/HA composite was prepared by AZ91 magnesium alloy and porous HA using squeeze casting method. The microstructure and mechanical property of the AZ91/HA composite were studied. The results show that the molten AZ9...AZ91/HA composite was prepared by AZ91 magnesium alloy and porous HA using squeeze casting method. The microstructure and mechanical property of the AZ91/HA composite were studied. The results show that the molten AZ91 alloy completely infiltrated the preform without destroying the porous structure of the HA preform. The compressive strength of AZ91/HA composite increased significantly compared with that of the porous HA. The immersion test indicated that AzgI ahoy shows a lower corrosion resistance and is easier to be corroded in comparison with HA.展开更多
Biodegradable scaffolds are essential parts in hard tissue engineering. A highly porous magnesium-zinc (Mg-Zn 4 wt.%) scaffold with different Mg-Zn powder to liquid media ratios (50 wt.%, 70 wt.% and 90 wt.%) and ...Biodegradable scaffolds are essential parts in hard tissue engineering. A highly porous magnesium-zinc (Mg-Zn 4 wt.%) scaffold with different Mg-Zn powder to liquid media ratios (50 wt.%, 70 wt.% and 90 wt.%) and different concentrations of ethanol (0 vol.%, 10 vol.%, 20 vol.% and 40 vol.%) were prepared through modified replica method. The mechanical properties were assessed through compression test and the structures of scaffolds were examined by Scanning Electron Microscope (SEM). Results show that, the increase in Mg-Zn powder to liquid media ratio (50 wt.% to 90 wt.%) in ethanol free slurry, increases the thickness of struts (37 lam to 74 lam) and the plateau stress (0.5 MPa to 1.4 MPa). The results obtained from X-ray Diffractometry (XRD) and compression test indicate that consuming ethanol in liquid media of replica, results in higher plateau stress by 46% due to less Mg-water reaction and no formation of Mg(OH)2 in the scaffold. The results of porosity measurement indicate that water-ethanol mixture composition and different solid fractions have no significant effects on true and apparent porosities of the fabricated scaffolds.展开更多
基金Project(20973124)supported by the National Natural Science Foundation of ChinaProject supported by Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education(Harbin Engineering University),China
文摘A novel type of porous magnesium electrode with a stable 3D copper foam as current collectors for the organic magnesium-air battery was prepared by both amperostatic and pulsed electrodeposition of magnesium on copper foam substrates in an electrolyte of 1 mol/L EtMgBr/THF solution, respectively. Optimal parameters of the pulsed electrodeposition were obtained using a bending cathode at the right angle. The surface morphology of the porous electrode was investigated by SEM, and the discharging performance of the porous magnesium electrode was detected by the chronoamperometric measurement. The electrochemical stability of 3D copper foam current collectors was examined by cyclic voltammetry, SEM and ICP-OES analyses. The results show that the rate capability of the porous magnesium electrode with a stable 3D copper foam as a current collector is better than that of the planar magnesium electrode, and the rate capability of the porous magnesium electrode prepared by the pulsed electrodeposition is superior to that of the porous magnesium electrode prepared by the amperostatic electrodeposition. The 3D structure of copper foam current collectors of the porous magnesium electrode could keep stable during the discharging process.
基金supported by"The National Key Research and Development Program of China(No.2018 YFA0703300)""Science and Technology Project of Education Department of Jilin Province(No.JJKH20231086KJ)"Development Project of Jilin Province(No.2021C038-4)。
文摘In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts.
基金supported by the Key National Basic Research Program of China (Grant No. 2012CB619101)the National Natural Science Foundation of China (No. 81190133)+3 种基金the National Natural Science Foundation for the Youth of China (Grant Nos. 81401852 and 31500777)the Doctoral Innovation Fund Projects from Shanghai Jiao Tong University School of Medicine (No. BXJ201430)the Natural Science Foundation of Shanghai (No. 14ZR1424000)"Chen Guang" Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 14CG14)
文摘Implant-associated infection remains a difficult medical problem in orthopedic surgery. Therefore, the development of multifunctional bone implants for treating infection and regenerating lost bone tissue, which may be a result of infection, is important. In the present study, we report the fabrication of enoxacin- loaded poly (lactic-co-glycolic acid) (PLGA) coating on porous magnesium scaffold (Enox-PLGA-Mg) which combine the favorable properties of magnesium, the antibacterial property and the effect of inhibition of osteoclastic bone resorption of enoxacin. The drug loaded PLGA coating of Mg scaffold enables higher drug loading efficiency (52%-56%) than non-coating enoxacin loaded Mg scaffold (Enox-Mg) (4%-5%). Enox- PLGA-Mg exhibits sustained drug release for more than 14 days, and this controlled release of enoxacin signifcantly inhibits bacterial adhesion and prevented biofilm formation by Staphylococcus epidermidis (ATCC35984) and Staphylococcus aureus (ATCC25923). Biocompatibility tests with Balb/c mouse embryo fibroblasts (Balb/c 3T3 cells) indicate that PLGA-Mg has better biocompatibility than Mg. Finally, we also demonstrate that Enox-PLCA-Mg extract potently inhibited osteoclast formation in vitro. Therefore, Enox- PLCA-Mg has the potential to be used as a multifunctional controlled drug delivery system bone scaffolds to prevent and/or treat orthopedic peri-implant infections.
基金supported by the Medicine-Engineering Cross Research Foundation of Shanghai Jiao Tong University(Grants No.YG2014MS41)
文摘AZ91/HA composite was prepared by AZ91 magnesium alloy and porous HA using squeeze casting method. The microstructure and mechanical property of the AZ91/HA composite were studied. The results show that the molten AZ91 alloy completely infiltrated the preform without destroying the porous structure of the HA preform. The compressive strength of AZ91/HA composite increased significantly compared with that of the porous HA. The immersion test indicated that AzgI ahoy shows a lower corrosion resistance and is easier to be corroded in comparison with HA.
文摘Biodegradable scaffolds are essential parts in hard tissue engineering. A highly porous magnesium-zinc (Mg-Zn 4 wt.%) scaffold with different Mg-Zn powder to liquid media ratios (50 wt.%, 70 wt.% and 90 wt.%) and different concentrations of ethanol (0 vol.%, 10 vol.%, 20 vol.% and 40 vol.%) were prepared through modified replica method. The mechanical properties were assessed through compression test and the structures of scaffolds were examined by Scanning Electron Microscope (SEM). Results show that, the increase in Mg-Zn powder to liquid media ratio (50 wt.% to 90 wt.%) in ethanol free slurry, increases the thickness of struts (37 lam to 74 lam) and the plateau stress (0.5 MPa to 1.4 MPa). The results obtained from X-ray Diffractometry (XRD) and compression test indicate that consuming ethanol in liquid media of replica, results in higher plateau stress by 46% due to less Mg-water reaction and no formation of Mg(OH)2 in the scaffold. The results of porosity measurement indicate that water-ethanol mixture composition and different solid fractions have no significant effects on true and apparent porosities of the fabricated scaffolds.