Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee...Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.展开更多
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic simila...Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.展开更多
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ...Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ- tricalcium phosphate (β-TCP) coatings were prepared on and the biodegradation mechanism was simply evaluated the porous Mg to further improve its biocompatibility, in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β- TCP coated porous Mg, which indicates that theβ-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.展开更多
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec...Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.展开更多
A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macr...A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macro channels' shape, size and distribution. By integrating rapid prototyping and traditional porogen technique, the macro channels and micro pores were formed respectively. The size, shape and quantity of micro pores were controlled by porogen particulates. The sintered β-TCP porous scaffolds possessed connective macro channels of approximately 500 μm and micro pores of 200-400 μm. The porosity and connectivity of micro pores became higher with the increase of porogen ratio, while the mechanical properties weakened. The average porosity and compressive strength offl-TCP scaffolds prepared with porogen ratio of 60wt% were 78.12% and 0.2983 MPa, respectively. The cells' adhesion ratio of scaffolds was 67.43%. The ALP activity, OCN content and cells micro morphology indicated that cells grew and proliferated well on the scaffolds.展开更多
A novel method was proposed to design the structure of a bone tissue engineering scafold based on triply periodic minimal surface.In this method,reverse engineering software was used to reconstruct the surface from po...A novel method was proposed to design the structure of a bone tissue engineering scafold based on triply periodic minimal surface.In this method,reverse engineering software was used to reconstruct the surface from point cloud data.This method overcomes the limitations of commercially available software packages that prevent them from generating models with complex surfaces used for bone tissue engineering scafolds.Additionally,the fluid feld of the scafolds was simulated through a numerical method based on fnite volume and the cell proliferation performance was evaluated via an in vitro experiment.The cell proliferation and the mass flow evaluated in a bioreactor further verifed the flow feld simulated using computational fluid dynamics.The result of this study illustrates that the pressure value drops rapidly from 0.103 Pa to 0.011 Pa in the y-axis direction and the mass flow is unevenly distributed in the outlets.The mass flow in the side outlets is observed to be approximately 24.3 times higher thanthe bottom.Importantly,although the mean value of wall shear stress is signifcantly more than 0.05 Pa,there is stil a large area with a suitable shear stress below 0.05 Pa where most cells can proliferate well.The result shows that th inlet velocity 0.0075 m/s is suitable for cell proliferation in the scafold.This study provides an insight into the design analysis,and in vitro experiment of a bone tissue engineering scafold.展开更多
BACKGROUND Bone tissue engineering is an area of continued interest within orthopaedic surgery,as it promises to create implantable bone substitute materials that obviate the need for autologous bone graft.Recently,ox...BACKGROUND Bone tissue engineering is an area of continued interest within orthopaedic surgery,as it promises to create implantable bone substitute materials that obviate the need for autologous bone graft.Recently,oxysterols–oxygenated derivatives of cholesterol-have been proposed as a novel class of osteoinductive small molecules for bone tissue engineering.Here,we present the first systematic review of the in vivo evidence describing the potential therapeutic utility of oxysterols for bone tissue engineering.AIM To systematically review the available literature examining the effect of oxysterols on in vivo bone formation.METHODS We conducted a systematic review of the literature following PRISMA guidelines.Using the PubMed/MEDLINE,Embase,and Web of Science databases,we queried all publications in the English-language literature investigating the effect of oxysterols on in vivo bone formation.Articles were screened for eligibility using PICOS criteria and assessed for potential bias using an expanded version of the SYRCLE Risk of Bias assessment tool.All full-text articles examining the effect of oxysterols on in vivo bone formation were included.Extracted data included:Animal species,surgical/defect model,description of therapeutic and control treatments,and method for assessing bone growth.Primary outcome was fusion rate for spinal fusion models and percent bone regeneration for critical-sized defect models.Data were tabulated and described by both surgical/defect model and oxysterol employed.Additionally,data from all included studies were aggregated to posit the mechanism by which oxysterols may mediate in vivo bone formation.RESULTS Our search identified 267 unique articles,of which 27 underwent full-text review.Thirteen studies(all preclinical)met our inclusion/exclusion criteria.Of the 13 included studies,5 employed spinal fusion models,2 employed critical-sized alveolar defect models,and 6 employed critical-sized calvarial defect models.Based upon SYRCLE criteria,the included studies were found to possess an overall“unclear risk of bias”;54%of studies reported treatment randomization and 38%reported blinding at any level.Overall,seven unique oxysterols were evaluated:20(S)-hydroxycholesterol,22(R)-hydroxycholesterol,22(S)-hydroxycholesterol,Oxy4/Oxy34,Oxy18,Oxy21/Oxy133,and Oxy49.All had statistically significant in vivo osteoinductive properties,with Oxy4/Oxy34,Oxy21/Oxy133,and Oxy49 showing a dose-dependent effect in some cases.In the eight studies that directly compared oxysterols to rhBMP-2-treated animals,similar rates of bone growth occurred in the two groups.Biochemical investigation of these effects suggests that they may be primarily mediated by direct activation of Smoothened in the Hedgehog signaling pathway.CONCLUSION Present preclinical evidence suggests oxysterols significantly augment in vivo bone formation.However,clinical trials are necessary to determine which have the greatest therapeutic potential for orthopaedic surgery patients.展开更多
Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymer...Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymers are commonlyprocessed into porous scaffolds using conventional processing techniques,e.g.,saltleaching.However,these traditional techniques have shown unavoidable limitations andseveral shortcomings.For instance,tissue-engineered porous scaffolds with a complexthree-dimensional(3D)geometric architecture mimicking the complexity of theextracellular matrix of native tissues and with the ability to fit into irregular tissue defectscannot be produced using the conventional processing techniques.3D printing hasrecently emerged as an advanced processing technology that enables the processing ofbiomaterials into 3D porous scaffolds with highly complex architectures and tunableshapes to precisely fit into irregular and complex tissue defects.3D printing providescomputer-based layer-by-layer additive manufacturing processes of highly precise andcomplex 3D structures with well-defined porosity and controlled mechanical propertiesin a highly reproducible manner.Furthermore,3D printing technology provides anaccurate patient-specific tissue defect model and enables the fabrication of a patientspecifictissue-engineered porous scaffold with pre-customized properties.展开更多
An appropriate cell microenvironment is key to tissue engineering and regenerative medicine.Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology,...An appropriate cell microenvironment is key to tissue engineering and regenerative medicine.Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology,biomaterials,tissue engineering,and regenerative medicine.The cell microenvironment consists of not only its surrounding cells and soluble factors,but also its extracellular matrix(ECM)or nearby external biomaterials in tissue engineering and regeneration.This review focuses on six aspects of bioma-terial-related cell microenvironments:①chemical composition of materials,②material dimensions and architecture,③material-controlled cell geometry,④effects of material charges on cells,⑤matrix stiff-ness and biomechanical microenvironment,and⑥surface modification of materials.The present chal-lenges in tissue engineering are also mentioned,and eight perspectives are predicted.展开更多
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitatio...Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.展开更多
In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (...In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (w/w) HA/-TCP (hydroxyapatite/fl-tricalcium phosphate) was produced by heating of bovine bone at 700℃. Composite scaffolds were made by using PLGA matrix and 10-50 wt% nBCP powders as reinforcement material. All scaffolds were prepared by thermally induced solid-liquid phase separation (TIPS) at -60~C under 4 Pa (0.04 mbar) vacuum. The results of elastic modulus testing were adjusted with Ishai-Cohen and Narkis models for rigid polymeric matrix and compared to each other. PLGA/nBCP scaffolds with 30 wt% nBCP showed the highest value of yield strength among the scaffolds. In addition, it was found that by increasing the nBCP in scaffolds to 50 wt%, the modulus of elasticity was highly enhanced. However, the optimum value of yield strength was obtained at 30 wt% nBCP, and the agglomeration of reinforcing particles at higher percentages caused a reduction in yield strength. It is clear that the elastic modulus of matrix has the significant role in elastic modulus of scaffolds, as also the size of the filler particles in the matrix.展开更多
Over the last decades,bone tissue engineering has increasingly become a research focus in the field of biomedical engineering,in which biomaterials play an important role because they can provide both biomechanical su...Over the last decades,bone tissue engineering has increasingly become a research focus in the field of biomedical engineering,in which biomaterials play an important role because they can provide both biomechanical support and osteogenic microenvironment in the process of bone regeneration.Among these biomaterials,two-dimensional(2D)nanomaterials have recently attracted considerable interest owing to their fantastic physicochemical and biological properties including great biocompatibility,excellent osteogenic capability,large specific surface area,and outstanding drug loading capacity.In this review,we summarize the state-of-the-art advances in 2D nanomaterials for bone tissue engineering.Firstly,we introduce the most explored biomaterials used in bone tissue engineering and their advantages.We then highlight the advances of cutting-edge 2D nanomaterials such as graphene and its derivatives,layered double hydroxides,black phosphorus,transition metal dichalcogenides,montmorillonite,hexagonal boron nitride,graphite phase carbon nitride,and transition metal carbonitrides(MXenes)used in bone tissue engineering.Finally,the current challenges and future prospects of 2D nanomaterials for bone tissue regeneration in process of clinical translation are discussed.展开更多
Maxillofacial bone defects caused by congenital malformations,trauma,tumors,and inflammation can severely affect functions and aesthetics of maxillofacial region.Despite certain successful clinical applications of bio...Maxillofacial bone defects caused by congenital malformations,trauma,tumors,and inflammation can severely affect functions and aesthetics of maxillofacial region.Despite certain successful clinical applications of biomaterial scaffolds,ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape,complex structure,and unique biological functions.Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity,costs,operational convenience.etc.In this review,we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy,which provide basis and directions for future scaffold design.Latest advances of these scaffolds are then discussed,as well as future perspectives and challenges.Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.展开更多
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev...In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects.展开更多
Considering the advantages and disadvantages of biomaterials used for the production of 3D scaffolds for tissue engineering,new strategies for designing advanced functional biomimetic structures have been reviewed.We ...Considering the advantages and disadvantages of biomaterials used for the production of 3D scaffolds for tissue engineering,new strategies for designing advanced functional biomimetic structures have been reviewed.We offer a comprehensive summary of recent trends in development of single-(metal,ceramics and polymers),composite-type and cell-laden scaffolds that in addition to mechanical support,promote simultaneous tissue growth,and deliver different molecules(growth factors,cytokines,bioactive ions,genes,drugs,antibiotics,etc.)or cells with therapeutic or facilitating regeneration effect.The paper briefly focuses on divers 3D bioprinting constructs and the challenges they face.Based on their application in hard and soft tissue engineering,in vitro and in vivo effects triggered by the structural and biological functionalized biomaterials are underlined.The authors discuss the future outlook for the development of bioactive scaffolds that could pave the way for their successful imposing in clinical therapy.展开更多
Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the...Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.展开更多
Metal additive manufacturing(AM)has led to an evolution in the design and fabrication of hard tissue substitutes,enabling personalized implants to address each patient’s specific needs.In addition,internal pore archi...Metal additive manufacturing(AM)has led to an evolution in the design and fabrication of hard tissue substitutes,enabling personalized implants to address each patient’s specific needs.In addition,internal pore architectures integrated within additively manufactured scaffolds,have provided an opportunity to further develop and engineer functional implants for better tissue integration,and long-term durability.In this review,the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted.After introducing metal AM processes,biocompatible metals adapted for integration with AM machines are presented.Then,we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including,topology optimization techniques,as well as unit cell patterns based on lattice networks,and triply periodic minimal surface.Here,the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed.Subsequently,the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters.We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation.Finally,we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.展开更多
文摘Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.
基金supported by NIH R01 DE14190 and R21 DE22625 (HX)National Science Foundation of China 31100695 and 31328008 (LZ), 81401794 (PW)Maryland Stem Cell Research Fund and University of Maryland School of Dentistry
文摘Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
基金supported by Chinese Academy of Sciences (The Applied Research of Bioactive Bone Implantation Materials, No. KGCX2-YW-207)
文摘Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ- tricalcium phosphate (β-TCP) coatings were prepared on and the biodegradation mechanism was simply evaluated the porous Mg to further improve its biocompatibility, in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β- TCP coated porous Mg, which indicates that theβ-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.
基金supported by grants from Shenzhen Key Medical Subject(No.SZXK023)Shenzhen“SanMing”Project of Medicine(No.SZSM201612092)+3 种基金Shenzhen Research and Development Projects(No.JCYJ20170307111755218)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011290)National Key Research and Development Program of China(No.2016YFC1102103)China Postdoctoral Science Foundation(No.2020M672756)
文摘Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.
基金Funded by the Postdoctor Science Fund of China (No. 20070410715) Shanghai Excellent Youth Special Fund (No. 17014)
文摘A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macro channels' shape, size and distribution. By integrating rapid prototyping and traditional porogen technique, the macro channels and micro pores were formed respectively. The size, shape and quantity of micro pores were controlled by porogen particulates. The sintered β-TCP porous scaffolds possessed connective macro channels of approximately 500 μm and micro pores of 200-400 μm. The porosity and connectivity of micro pores became higher with the increase of porogen ratio, while the mechanical properties weakened. The average porosity and compressive strength offl-TCP scaffolds prepared with porogen ratio of 60wt% were 78.12% and 0.2983 MPa, respectively. The cells' adhesion ratio of scaffolds was 67.43%. The ALP activity, OCN content and cells micro morphology indicated that cells grew and proliferated well on the scaffolds.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675312,51375273)
文摘A novel method was proposed to design the structure of a bone tissue engineering scafold based on triply periodic minimal surface.In this method,reverse engineering software was used to reconstruct the surface from point cloud data.This method overcomes the limitations of commercially available software packages that prevent them from generating models with complex surfaces used for bone tissue engineering scafolds.Additionally,the fluid feld of the scafolds was simulated through a numerical method based on fnite volume and the cell proliferation performance was evaluated via an in vitro experiment.The cell proliferation and the mass flow evaluated in a bioreactor further verifed the flow feld simulated using computational fluid dynamics.The result of this study illustrates that the pressure value drops rapidly from 0.103 Pa to 0.011 Pa in the y-axis direction and the mass flow is unevenly distributed in the outlets.The mass flow in the side outlets is observed to be approximately 24.3 times higher thanthe bottom.Importantly,although the mean value of wall shear stress is signifcantly more than 0.05 Pa,there is stil a large area with a suitable shear stress below 0.05 Pa where most cells can proliferate well.The result shows that th inlet velocity 0.0075 m/s is suitable for cell proliferation in the scafold.This study provides an insight into the design analysis,and in vitro experiment of a bone tissue engineering scafold.
文摘BACKGROUND Bone tissue engineering is an area of continued interest within orthopaedic surgery,as it promises to create implantable bone substitute materials that obviate the need for autologous bone graft.Recently,oxysterols–oxygenated derivatives of cholesterol-have been proposed as a novel class of osteoinductive small molecules for bone tissue engineering.Here,we present the first systematic review of the in vivo evidence describing the potential therapeutic utility of oxysterols for bone tissue engineering.AIM To systematically review the available literature examining the effect of oxysterols on in vivo bone formation.METHODS We conducted a systematic review of the literature following PRISMA guidelines.Using the PubMed/MEDLINE,Embase,and Web of Science databases,we queried all publications in the English-language literature investigating the effect of oxysterols on in vivo bone formation.Articles were screened for eligibility using PICOS criteria and assessed for potential bias using an expanded version of the SYRCLE Risk of Bias assessment tool.All full-text articles examining the effect of oxysterols on in vivo bone formation were included.Extracted data included:Animal species,surgical/defect model,description of therapeutic and control treatments,and method for assessing bone growth.Primary outcome was fusion rate for spinal fusion models and percent bone regeneration for critical-sized defect models.Data were tabulated and described by both surgical/defect model and oxysterol employed.Additionally,data from all included studies were aggregated to posit the mechanism by which oxysterols may mediate in vivo bone formation.RESULTS Our search identified 267 unique articles,of which 27 underwent full-text review.Thirteen studies(all preclinical)met our inclusion/exclusion criteria.Of the 13 included studies,5 employed spinal fusion models,2 employed critical-sized alveolar defect models,and 6 employed critical-sized calvarial defect models.Based upon SYRCLE criteria,the included studies were found to possess an overall“unclear risk of bias”;54%of studies reported treatment randomization and 38%reported blinding at any level.Overall,seven unique oxysterols were evaluated:20(S)-hydroxycholesterol,22(R)-hydroxycholesterol,22(S)-hydroxycholesterol,Oxy4/Oxy34,Oxy18,Oxy21/Oxy133,and Oxy49.All had statistically significant in vivo osteoinductive properties,with Oxy4/Oxy34,Oxy21/Oxy133,and Oxy49 showing a dose-dependent effect in some cases.In the eight studies that directly compared oxysterols to rhBMP-2-treated animals,similar rates of bone growth occurred in the two groups.Biochemical investigation of these effects suggests that they may be primarily mediated by direct activation of Smoothened in the Hedgehog signaling pathway.CONCLUSION Present preclinical evidence suggests oxysterols significantly augment in vivo bone formation.However,clinical trials are necessary to determine which have the greatest therapeutic potential for orthopaedic surgery patients.
文摘Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymers are commonlyprocessed into porous scaffolds using conventional processing techniques,e.g.,saltleaching.However,these traditional techniques have shown unavoidable limitations andseveral shortcomings.For instance,tissue-engineered porous scaffolds with a complexthree-dimensional(3D)geometric architecture mimicking the complexity of theextracellular matrix of native tissues and with the ability to fit into irregular tissue defectscannot be produced using the conventional processing techniques.3D printing hasrecently emerged as an advanced processing technology that enables the processing ofbiomaterials into 3D porous scaffolds with highly complex architectures and tunableshapes to precisely fit into irregular and complex tissue defects.3D printing providescomputer-based layer-by-layer additive manufacturing processes of highly precise andcomplex 3D structures with well-defined porosity and controlled mechanical propertiesin a highly reproducible manner.Furthermore,3D printing technology provides anaccurate patient-specific tissue defect model and enables the fabrication of a patientspecifictissue-engineered porous scaffold with pre-customized properties.
基金the financial support from the National Natural Science Foundation of China (21961160721 and 52130302)the National Key Research and Development Program of China(2016YFC1100300)
文摘An appropriate cell microenvironment is key to tissue engineering and regenerative medicine.Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology,biomaterials,tissue engineering,and regenerative medicine.The cell microenvironment consists of not only its surrounding cells and soluble factors,but also its extracellular matrix(ECM)or nearby external biomaterials in tissue engineering and regeneration.This review focuses on six aspects of bioma-terial-related cell microenvironments:①chemical composition of materials,②material dimensions and architecture,③material-controlled cell geometry,④effects of material charges on cells,⑤matrix stiff-ness and biomechanical microenvironment,and⑥surface modification of materials.The present chal-lenges in tissue engineering are also mentioned,and eight perspectives are predicted.
基金US DOD (No.W81XWH-12-2-0008)the National Institutes of Health (Nos.NIDCR DE022327 and T32 HD007505)+1 种基金National Natural Science Foundation of China (Nos.51502237,21304073,and 51673155)and Xi'an Jiaotong University.
文摘Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
基金supported by Isfahan University of Technology and Ministry of Sciences, Research & Technology in Iran and Materials Science & Engineering School of Nanyang Technological University in Singapore
文摘In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (w/w) HA/-TCP (hydroxyapatite/fl-tricalcium phosphate) was produced by heating of bovine bone at 700℃. Composite scaffolds were made by using PLGA matrix and 10-50 wt% nBCP powders as reinforcement material. All scaffolds were prepared by thermally induced solid-liquid phase separation (TIPS) at -60~C under 4 Pa (0.04 mbar) vacuum. The results of elastic modulus testing were adjusted with Ishai-Cohen and Narkis models for rigid polymeric matrix and compared to each other. PLGA/nBCP scaffolds with 30 wt% nBCP showed the highest value of yield strength among the scaffolds. In addition, it was found that by increasing the nBCP in scaffolds to 50 wt%, the modulus of elasticity was highly enhanced. However, the optimum value of yield strength was obtained at 30 wt% nBCP, and the agglomeration of reinforcing particles at higher percentages caused a reduction in yield strength. It is clear that the elastic modulus of matrix has the significant role in elastic modulus of scaffolds, as also the size of the filler particles in the matrix.
基金support from the National Natural Science Foundation of China(NSFC:21971007)and the Beijing Natural Science Foundation(2212044).X.W thanks the funding support from the National Natural Science Foundation of China(Grant IDs:81630064 and 81871786)and National Key R&D Program of China 2018YFF0301105.C.T.thanks the funding support from the National Natural Science Foundation of China(Project Nos.22005259 and 52122002),and the Start-Up Grant(Project No.9610495)from City University of Hong Kong.
文摘Over the last decades,bone tissue engineering has increasingly become a research focus in the field of biomedical engineering,in which biomaterials play an important role because they can provide both biomechanical support and osteogenic microenvironment in the process of bone regeneration.Among these biomaterials,two-dimensional(2D)nanomaterials have recently attracted considerable interest owing to their fantastic physicochemical and biological properties including great biocompatibility,excellent osteogenic capability,large specific surface area,and outstanding drug loading capacity.In this review,we summarize the state-of-the-art advances in 2D nanomaterials for bone tissue engineering.Firstly,we introduce the most explored biomaterials used in bone tissue engineering and their advantages.We then highlight the advances of cutting-edge 2D nanomaterials such as graphene and its derivatives,layered double hydroxides,black phosphorus,transition metal dichalcogenides,montmorillonite,hexagonal boron nitride,graphite phase carbon nitride,and transition metal carbonitrides(MXenes)used in bone tissue engineering.Finally,the current challenges and future prospects of 2D nanomaterials for bone tissue regeneration in process of clinical translation are discussed.
基金supported by National Natural Science Foundation of China(81970974)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-04)+1 种基金National Natural Science Foundation of China(82370943)Key Clinical Technique Program of Guangzhou(2023P-ZD07).
文摘Maxillofacial bone defects caused by congenital malformations,trauma,tumors,and inflammation can severely affect functions and aesthetics of maxillofacial region.Despite certain successful clinical applications of biomaterial scaffolds,ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape,complex structure,and unique biological functions.Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity,costs,operational convenience.etc.In this review,we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy,which provide basis and directions for future scaffold design.Latest advances of these scaffolds are then discussed,as well as future perspectives and challenges.Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
基金supported by the National Key R&D Program of China[grant number 2021YFC2400700]the National Natural Science Foundation of China[grant numbers 82170929,81970908 and 81771039].
文摘In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects.
基金funded by the National Science Fund of Bulgaria(NSFB),Contract№DN 07/3(2016),Gradient functional nanocoatings produced by vacuum technologies for biomedical applications.
文摘Considering the advantages and disadvantages of biomaterials used for the production of 3D scaffolds for tissue engineering,new strategies for designing advanced functional biomimetic structures have been reviewed.We offer a comprehensive summary of recent trends in development of single-(metal,ceramics and polymers),composite-type and cell-laden scaffolds that in addition to mechanical support,promote simultaneous tissue growth,and deliver different molecules(growth factors,cytokines,bioactive ions,genes,drugs,antibiotics,etc.)or cells with therapeutic or facilitating regeneration effect.The paper briefly focuses on divers 3D bioprinting constructs and the challenges they face.Based on their application in hard and soft tissue engineering,in vitro and in vivo effects triggered by the structural and biological functionalized biomaterials are underlined.The authors discuss the future outlook for the development of bioactive scaffolds that could pave the way for their successful imposing in clinical therapy.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(Nos.DUT22QN203 and DUT22YG201).
文摘Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.
基金funding from the National Institutes of Health(1R01AR073135-01A1)。
文摘Metal additive manufacturing(AM)has led to an evolution in the design and fabrication of hard tissue substitutes,enabling personalized implants to address each patient’s specific needs.In addition,internal pore architectures integrated within additively manufactured scaffolds,have provided an opportunity to further develop and engineer functional implants for better tissue integration,and long-term durability.In this review,the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted.After introducing metal AM processes,biocompatible metals adapted for integration with AM machines are presented.Then,we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including,topology optimization techniques,as well as unit cell patterns based on lattice networks,and triply periodic minimal surface.Here,the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed.Subsequently,the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters.We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation.Finally,we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.