A microfabrication process for poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) based flexible piezoelectric devices is proposed using heat controlled spin coating and reactive ion etching(RIE) techniques.Dry ...A microfabrication process for poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) based flexible piezoelectric devices is proposed using heat controlled spin coating and reactive ion etching(RIE) techniques.Dry etching of P(VDF-TrFE) in CF 4 +O2 plasma is found to be more effective than that using SF 6 +O2 or Ar+O2 feed gas with the same radiofrequency power and pressure conditions.A maximum etching rate of 400 nm/min is obtained using the CF 4 +O2 plasma with an oxygen concentration of 60% at an antenna power of 200 W and a platen power of 20 W.The oxygen atoms and fluorine atoms are found to be responsible for the chemical etching process.Microstructuring of P(VDF-TrFE) with a feature size of 10 m is achieved and the patterned films show a high remanent polarization of 63.6mC/m 2.展开更多
文摘A microfabrication process for poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)) based flexible piezoelectric devices is proposed using heat controlled spin coating and reactive ion etching(RIE) techniques.Dry etching of P(VDF-TrFE) in CF 4 +O2 plasma is found to be more effective than that using SF 6 +O2 or Ar+O2 feed gas with the same radiofrequency power and pressure conditions.A maximum etching rate of 400 nm/min is obtained using the CF 4 +O2 plasma with an oxygen concentration of 60% at an antenna power of 200 W and a platen power of 20 W.The oxygen atoms and fluorine atoms are found to be responsible for the chemical etching process.Microstructuring of P(VDF-TrFE) with a feature size of 10 m is achieved and the patterned films show a high remanent polarization of 63.6mC/m 2.