期刊文献+
共找到3,372篇文章
< 1 2 169 >
每页显示 20 50 100
Construction of 3D porous Cu_(1.81)S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage
1
作者 Chen Chen Hongyu Xue +6 位作者 Qilin Hu Mengfan Wang Pan Shang Ziyan Liu Tao Peng Deyang Zhang Yongsong Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期191-200,共10页
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d... Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode. 展开更多
关键词 copper sulfide nanoparticles porous carbon framework fast charging long-cycle performance sodium-ion full batteries
下载PDF
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
2
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux Lithium metal battery
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:6
3
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel 被引量:1
4
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review 被引量:2
5
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al)and its application for high-performance Zn-ion capacitor 被引量:1
6
作者 Jiaxin Li Shuai Zhang +6 位作者 Yumeng Hua Yichao Lin Xin Wen Ewa Mijowska Tao Tang Xuecheng Chen Rodney S.Ruoff 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1138-1150,共13页
It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage... It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development. 展开更多
关键词 PET RECYCLING porous carbon SUPERCAPACITOR Energy storage
下载PDF
Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel 被引量:1
7
作者 N.HUMNEKAR D.SRINIVASACHARYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期563-580,共18页
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn... The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented. 展开更多
关键词 NANOFLUID inclined channel variable viscosity linear stability double dif-fusion porous medium
下载PDF
An experimental study on horizontal well waterflooding in the Cretaceous porous carbonate reservoir of Oman 被引量:2
8
作者 Jie Chen Liang Cheng +2 位作者 Song Jin Yongli Wang Leiting Shi 《Energy Geoscience》 EI 2024年第3期85-92,共8页
Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding ... Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells. 展开更多
关键词 porous carbonate reservoir Horizontal well waterflooding Microscopic visualization Three-dimensional physical model Waterflooding characteristics
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
9
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
10
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION porous metal oxides ELECTROCATALYSIS
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
11
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Lignite-Based Hierarchical Porous C/SiO_(x)Composites as High-Performance Anode for Potassium-Ion Batteries 被引量:1
12
作者 Zexu Yang Shouwang Zhao +7 位作者 Rongji Jiao Gengyu Hao Yunying Liu Wenxiu He Jingwei Chen Guixiao Jia Jinlong Cui Shaohui Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期107-117,共11页
Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abu... Silicon oxide(SiO_(x),0<x≤2)has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity,suitable electrochemical potential,and earth abundance.However,it is intrinsically poor electronic conductivity and excessive volume expansion during potassiation/depotassiation process hinder its application in potassium-ion batteries.Herein,we reported a hierarchical porous C/SiO_(x)potassium-ion batteries anode using lignite as raw material via a one-step carbonization and activation method.The amorphous C skeleton around SiO_(x)particles can effectively buffer the volume expansion,and improve the ionic/electronic conductivity and structural integrity,achieving outstanding rate capability and cyclability.As expected,the obtained C/SiO_(x)composite delivers a superb specific capacity of 370 mAh g^(-1)at 0.1 A g^(-1)after 100 cycles as well as a highly reversible capacity of 208 mAh g^(-1)after 1200 cycles at 1.0 A g^(-1).Moreover,the potassium ion storage mechanism of C/SiO_(x)electrodes was investigated by ex-situ X-ray diffraction and transmission electron microscopy,revealing the formation of reversible products of K_(6.8)Si_(45.3)and K_(4)SiO_(4),accompanied by generation of irreversible K2O after the first cycle.This work sheds light on designing low-cost Si-based anode materials for high-performance potassium-ion batteries and beyond. 展开更多
关键词 ANODE hierarchical porous C/SiO_(x) K_(4)SiO_(4) LIGNITE potassium-ion batteries
下载PDF
High-strength,multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure 被引量:2
13
作者 Feiyue Yang Shuang Zhao +4 位作者 Guobing Chen Kunfeng Li Zhifang Fei Paul Mummery Zichun Yang 《Advanced Powder Materials》 2024年第1期102-113,共12页
The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials.However,the contradiction between high strength and elevated porosity of porous materials s... The quest for lightweight and functional materials poses stringent requirements on mechanical performance of porous materials.However,the contradiction between high strength and elevated porosity of porous materials severely limits their application scenarios in emerging fields.Herein,high-strength multifunctional mullite-based porous ceramic monoliths were fabricated utilizing waste fly ash hollow microspheres(FAHMs)by the protein gelling technique.Owing to their unique shell-pore structure inspired by shell-protected biomaterials,the monoliths with porosity of 54.69%–70.02% exhibited a high compressive strength(32.3–42.9 MPa)which was 2–5 times that of mullite-based porous ceramics with similar density reported elsewhere.Moreover,their pore structure and properties could be tuned by regulation of the particle size and content of the FAHMs,and the resultant monoliths demonstrated superior integrated performances for multifunctional applications,such as broadband sound insulation,efficient thermal insulation,and high-temperature fire resistance(>1300℃).On this basis,mullite-based porous ceramic lattices(porosity 68.28%–84.79%)with a hierarchical porous structure were successfully assembled by direct ink writing(DIW),which exhibited significantly higher compressive strength(3.02–10.77 MPa)than most other ceramic lattices with comparable densities.This unique shell-pore structure can be extended to other porous materials,and our strategy paves a new way for cost-effective,scalable and green production of multifunctional materials with well-defined microstructure. 展开更多
关键词 Mullite-based porous ceramics Hollow microspheres Protein gelling technique High compressive strength Multifunctional integration Hierarchical porous structures
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
14
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
15
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks porous cages FULLERENE
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
16
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
Physics of porous materials under extreme laser-generated conditions
17
作者 V.T.Tikhonchuk S.Weber 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期1-3,共3页
Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inerti... Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inertial confinement fusion,fundamental research,and secondary sources.Understanding the processes of transformation of a porous solid into a plasma is of fundamental interest and is needed for producing materials with desired properties. 展开更多
关键词 interaction. properties. porous
下载PDF
Construction of a High‑Performance Composite Solid Electrolyte Through In‑Situ Polymerization within a Self‑Supported Porous Garnet Framework 被引量:2
18
作者 An‑Giang Nguyen Min‑Ho Lee +1 位作者 Jaekook Kim Chan‑Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期56-70,共15页
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in... Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs. 展开更多
关键词 Scalable tape-casting method Self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12) Composite solid electrolyte LiF-and B-rich interphase layers
下载PDF
Nonstationary laser-supported ionization wave in layer of porous substance with subcritical density
19
作者 S.Yu Gus’kov R.A.Yakhin 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期58-70,共13页
A time-dependent analytical solution is found for the velocity of a plane ionization wave generated under nanosecond laser pulse action on the surface of a flat layer of low-Z porous substance with density less than t... A time-dependent analytical solution is found for the velocity of a plane ionization wave generated under nanosecond laser pulse action on the surface of a flat layer of low-Z porous substance with density less than the critical density of the produced plasma.With corrections for the two-dimensional nature of the problem when a laser beam of finite radius interacts with a flat target,this solution is in quantitative agreement with measurements of ionization wave velocity in various experiments.The solution compared with experimental data covering wide ranges of performance conditions,namely,(3-8)×10^(14)W cm^(−2)for laser pulse intensity,0.3-3 ns for pulse duration,0.35-0.53μm for laser wavelength,100-1000μm for laser beam radius,380-950μm for layer thickness,4.5-12 mg cm^(−3)for average density of porous substance,and 1-25μm for average pore size.The parameters of the laser beam that ensure the generation of a plane ionization wave in a layer of subcritical porous matter are determined for the problem statements and are found to meet the requirements of practical applications. 展开更多
关键词 LASER PULSE porous
下载PDF
Synthesis of waterborne polyurethane-humic acid cross-linked biomass porous materials for the adsorption of methylene blue
20
作者 Shanghong Ma Jianbo Qu +4 位作者 Haitao Zhang Xiubin Cui Peng Ye Qingfei Hu Mingzhen Chao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期27-38,共12页
A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and envir... A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability. 展开更多
关键词 porous media BIOENERGY Sustainability Waste water
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部