期刊文献+
共找到3,330篇文章
< 1 2 167 >
每页显示 20 50 100
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:4
1
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
2
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al)and its application for high-performance Zn-ion capacitor 被引量:1
3
作者 Jiaxin Li Shuai Zhang +6 位作者 Yumeng Hua Yichao Lin Xin Wen Ewa Mijowska Tao Tang Xuecheng Chen Rodney S.Ruoff 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1138-1150,共13页
It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage... It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development. 展开更多
关键词 PET RECYCLING Porous carbon SUPERCAPACITOR Energy storage
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review 被引量:1
4
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 Porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
Recent Research Progress of Paper-Based Supercapacitors Based on Cellulose 被引量:1
5
作者 Chuanyin Xiong Tianxu Wang +2 位作者 Jing Han zhao Zhang Yonghao Ni 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期345-373,共29页
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo... In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices. 展开更多
关键词 CELLULOSE electrochemical performance FLEXIBILITY paper-based supercapacitor porous
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage 被引量:1
6
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured Interconnected porous Scaffolds Electrode design Electrochemical energy storage
下载PDF
Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel 被引量:1
7
作者 N.HUMNEKAR D.SRINIVASACHARYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期563-580,共18页
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn... The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented. 展开更多
关键词 NANOFLUID inclined channel variable viscosity linear stability double dif-fusion porous medium
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
8
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
9
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Synergistic effect of carbon nanotube and encapsulated carbon layer enabling high-performance SnS_2-based anode for lithium storage 被引量:1
10
作者 Chunwei Dong Yongjin Xia +7 位作者 Zhijiang Su Zhihua Han Yang Dong Jingyun Chen Fei Hao Qiyao Yu Qing Jiang Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期700-709,I0015,共11页
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug... Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs. 展开更多
关键词 Lithium-ion batteries Porous amorphous carbon Carbon nanotubes SnS_(2)-based anode Density functional theory calculations
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
11
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) Phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Construction of a High‑Performance Composite Solid Electrolyte Through In‑Situ Polymerization within a Self‑Supported Porous Garnet Framework 被引量:1
12
作者 An‑Giang Nguyen Min‑Ho Lee +1 位作者 Jaekook Kim Chan‑Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期56-70,共15页
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in... Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs. 展开更多
关键词 Scalable tape-casting method Self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12) Composite solid electrolyte LiF-and B-rich interphase layers
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring 被引量:1
13
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Advanced Materials for NH_(3)Capture:Interaction Sites and Transport Pathways
14
作者 Hai‑Yan Jiang Zao‑Ming Wang +5 位作者 Xue‑Qi Sun Shao‑Juan Zeng Yang‑Yang Guo Lu Bai Ming‑Shui Yao Xiang‑Ping Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期119-155,共37页
Ammonia(NH3)is a carbon-free,hydrogen-rich chemical related to global food safety,clean energy,and environmental protection.As an essential technology for meeting the requirements raised by such issues,NH3 capture has... Ammonia(NH3)is a carbon-free,hydrogen-rich chemical related to global food safety,clean energy,and environmental protection.As an essential technology for meeting the requirements raised by such issues,NH3 capture has been intensively explored by researchers in both fundamental and applied fields.The four typical methods used are(1)solvent absorption by ionic liquids and their derivatives,(2)adsorption by porous solids,(3)abadsorption by porous liquids,and(4)membrane separation.Rooted in the development of advanced materials for NH3 capture,we conducted a coherent review of the design of different materials,mainly in the past 5 years,their interactions with NH3 molecules and construction of transport pathways,as well as the structure–property relationship,with specific examples discussed.Finally,the challenges in current research and future worthwhile directions for NH3 capture materials are proposed. 展开更多
关键词 Ammonia capture Solvents Porous solids Porous liquids Membranes
下载PDF
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel
15
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
16
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 Porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks Porous cages FULLERENE
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
17
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
透空结构与半潜式风机集成系统耦合运动响应特性分析
18
作者 姚一晟 Robert Mayon +2 位作者 周宇 朱祎 宁德志 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期491-505,共15页
A novel semi-submersible platform is proposed for 5 MW wind turbines.This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform.A coupled aerodynamic–hydrodynamic... A novel semi-submersible platform is proposed for 5 MW wind turbines.This concept focuses on an integrated system formed by combining porous shells with a semi-submersible platform.A coupled aerodynamic–hydrodynamic–mooring analysis of the new system is performed.The motion responses of the novel platform system and the traditional platform are compared.The differences in hydrodynamic performance between the two platforms are also evaluated.The influence of the geometric parameters(porosity,diameter,and wall thickness)of porous shells on the motion response behavior of the new system is studied.Overall,the new semi-submersible platform exhibits superior stability in terms of pitch and heave degrees of freedom,demonstrating minimal effects on the motion response in the surge degree of freedom. 展开更多
关键词 Semi-submersible platform Porous shells OC4-DeepCwind Motion response Hydrodynamic parameters Porous shells’geometric parameters
下载PDF
Concise extraction and characterization of the pore-throat network in unconventional hydrocarbon reservoirs: A new perspective
19
作者 Shu-Heng Du Yong-Min Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1474-1487,共14页
In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to ... In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration. 展开更多
关键词 Hydrocarbon exploitation PORE THROAT Porous media Identification
下载PDF
Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly
20
作者 Trung Tuyen Bui Mingyu Shin +3 位作者 Mohammad Rahimi Anders Bentien Yongchai Kwon Dirk Henkensmeier 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期191-204,共14页
A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bib... A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bibenzimidazole](OPBI)sandwiched between two 20μm thick porous OPBI membranes(p-OPBI)without further lamination steps.The trilayer membrane demonstrates exceptional properties,such as high conductivity and low area-specific resistance(ASR)of 51 mS cm^(−1) and 81mΩ cm^(2),respectively.Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158mΩ cm^(2),while that of Nafion is 193mΩ cm^(2).VO^(2+) permeability is 2.73×10^(-9) cm^(2) min^(−1),about 150 times lower than that of Nafion NR212.In addition,the membrane has high mechanical strength and high chemical stability against VO^(2+).In VRFB,the combination of low resistance and low vanadium permeability results in excellent performance,revealing high Coulombic efficiency(>99%),high energy efficiency(EE;90.8% at current density of 80mA cm^(−2)),and long-term durability.The EE is one of the best reported to date. 展开更多
关键词 POLYBENZIMIDAZOLE porous membrane proton conductivity TRILAYER VRFBs
下载PDF
上一页 1 2 167 下一页 到第
使用帮助 返回顶部