期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau,SW China 被引量:19
1
作者 HUANG Yong LI Guangming +4 位作者 DING Jun DAI Jie YAN Guoqiang DONG Suiliang HUANG Hanxiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期109-134,共26页
The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz ... The newly discovered Zhunuo porphyry Cu-Mo-Au deposit is located in the western part of the Gangdese porphyry copper belt in southern Tibet, SW China. The granitoid plutons in the Zhunuo region are composed of quartz diorite porphyry, diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry. The quartz diorite porphyry yielded zircon U-Pb ages of 51.9±0.7 Ma(Eocene) using LA-ICP-MS, whereas the diorite porphyry, granodiorite porphyry, biotite monzogranite and quartz porphyry yielded ages ranging from 16.2±0.2 to 14.0±0.2 Ma(Miocene). CuMo-Au mineralization is mainly hosted in the Miocene granodiorite porphyry. Samples from all granitoid plutons have geochemical compositions consistent with high-K calc-alkaline series magmatism. The samples display highly fractionated light rare-earth element(REE) distributions and heavy REE distributions with weakly negative Eu anomalies on chondrite-normalized REE patterns. The trace element distributions exhibit positive anomalies for large-ion lithophile elements(Rb, K, U, Th and Pb) and negative anomalies for high-field-strength elements(Nb and Ti) relative to primitive mantlenormalized values. The Eocene quartz diorite porphyry yielded εNd(t) values ranging from-3.6 to-5.2,(-(87)Sr/-(86)Sr)i values in the range 0.7046–0.7063 and initial radiogenic Pb isotopic compositions with ranges of 18.599–18.657 -(206)Pb/-(204)Pb, 15.642–15.673 -(207)Pb/-(204)Pb and 38.956–39.199 -(208)Pb/-(204)Pb. In contrast, the Miocene granitoid plutons yielded ε(Nd)(t) values ranging from-6.1 to-7.3 and(87Sr/86Sr)i values in the range 0.7071–0.7078 with similar Pb isotopic compositions to the Eocene quart diorite. The Sr-Nd-Pb isotopic compositions of the rocks are consistent with formation from magma containing a component of remelted ancient crust. Zircon grains from the Eocene quartz diorite have ε(Hf)(t) values ranging from-5.2 to +0.9 and two-stage Hf model ages ranging from 1.07 to 1.46 Ga, while zircon grains from the Miocene granitoid plutons have ε(Hf)(t) values from-9.9 to +4.2 and two-stage Hf model ages ranging from 1.05–1.73 Ga, indicating that the ancient crustal component likely derives from Paleo- to Mesoproterozoic basement. This source is distinct from that of most porphyry Cu-Mo-Au deposits in the eastern part of the Gangdese porphyry copper belt, which likely originated from juvenile crust. We therefore consider melting of ancient crustal basement to have contributed significantly to the formation Miocene porphyry Cu-Mo-Au deposits in the western part of the Gangdese porphyry copper belt. 展开更多
关键词 Zircon U-Pb dating Sr-Nd-Pb-Hf isotope Zhunuo porphyry Cu-Mo-Au deposit Gangdese porphyry copper belt
下载PDF
Geochronology and Geochemistry of the Mamupu Cu-Au Polymetallic Deposit,Eastern Tibet:Implications for Eocene Cu Metallogenesis in the Yulong Porphyry Copper Belt 被引量:2
2
作者 ZHANG Xiaoxu LIN Bin +9 位作者 TANG Juxing HE Liang LIU Zhibo WANG Qin SHAO Rui DU Qiu SILANG Wangdui CIREN Ouzhu GUSANG Quzhen CIDAN Zhongga 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1221-1236,共16页
The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrit... The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrite in breccia,within the plate-like carbonate interlayer,being closely related to chloritization(e.g.,chlorite,magnetite and epidote)and skarnization(e.g.,diopside,tremolite and garnet).The ore-related quartz syenite porphyry(QSP)and granodiorite porphyry(GP)were emplaced at 40.1±0.2 Ma and 39.9±0.3 Ma,respectively.The QSP of Mamupu is an alkaline-rich intrusion,relatively enriched in LREE,LILE,depleted in HFSE,with no significant negative Eu and Ce anomalies,slightly high(^(87)Sr/^(86)Sr)i,lowε_(Nd)(t),uniform(^(206)Pb/^(204)Pb)i andε_(Hf)(t)values,which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust.The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB.High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits.The QSP has similar high magmatic oxidation states and water content to the Yulong deposit,which indicates that the Mamupu has a high prospecting potential.Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions,as well as differences in the surrounding rocks. 展开更多
关键词 skarn Cu deposit GEOCHRONOLOGY GEOCHEMISTRY Mamupu Yulong porphyry copper belt Tibet
下载PDF
Characteristics and evolution of ore-forming fluids of the Chongjiang copper deposit in the Gangdise porphyry copper belt, Tibet 被引量:1
3
作者 Yuling Xie Jiuhua Xu +2 位作者 Guangming Li Zhiming Yang Longsheng Yi 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期97-102,共6页
Petrography, microthermometry, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) studies were performed on the fluid inclusions in the ore-beating quartz veins and quartz phenocrysts in the p... Petrography, microthermometry, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) studies were performed on the fluid inclusions in the ore-beating quartz veins and quartz phenocrysts in the porphyry of the Chongjiang porphyry copper deposit. The analyses of the fluid inclusions indicate that the ore-forming fluids were exsolved from magma. They are near-saturated, supercritical, rich in volatile constituents, and have the capture temperature of 362-389℃ and salinities of 17.7wt%- 18.9wt% NaC1 eq. With the decreasing of temperature and pressure, the supercritical fluids were separated into a low salinity vapor phase and a high salinity liquid phase. During quartz-sericitization, the high salinity fluid boiled and separated into a low salinity vapor phase and a high salinity liquid phase. The high salinity inclusions that formed in the boiling process had daughter mineral melting temperatures higher than the homogenization temperatures of the vapor and liquid phases. The late fluids that are responsible for argillization are of lower temperature and salinity. 展开更多
关键词 Gangdise porphyry copper belt Chongjiang copper deposit fluid inclusions ore-forming fluids
下载PDF
Texture and Geochemistry of Multi-stage Hydrothermal Scheelite in the Mamupu Cu-Au-Mo(-W)Deposit,Eastern Tibet:Implications for Tungsten Mineralization in the Yulong Belt
4
作者 ZHANG Xiaoxu TANG Juxing +7 位作者 LIN Bin WANG Qin HE Liang YAN Gang SHAO Rui WU Qiang DU Qiu ZHAXI Pingcuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期701-716,共16页
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ... Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit. 展开更多
关键词 SCHEELITE GEOCHEMISTRY Mamupu Cu deposit Yulong porphyry copper belt eastern Tibet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部