Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metal...The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.展开更多
The Masjed Daghi mineralization is located 30 km southeast of Jolfa city at the bank of Araxes River, northwest Iran. This area is situated in the Alborz-Azarbaijan structural zone of Iran. The most widespread rocks i...The Masjed Daghi mineralization is located 30 km southeast of Jolfa city at the bank of Araxes River, northwest Iran. This area is situated in the Alborz-Azarbaijan structural zone of Iran. The most widespread rocks in the mineralization area are andesite and trachyandesite, while there are rock units of latite tuff, andesitic agglomerate, and hornblende porphyry basalt in eastern hills and Eocene flysch in the southern part of the area. Several intrusive bodies are present in the study area, from which the dominant intrusive rock hosting the mineralization is diorite porphyry. The mineralized rock units of the area are cut by different diorite ad mafic dikes. The most prevalent texture of mineralization is dissemination, while open space filling textures including veins and veinlets, are common as well. Diverse types of alteration including potassic, phyllic, argillic, silicification, and a little of carbonatization were recognized in the field and microscopic observations as well as by XRD. In addition to thick silica veins and stockwork zones, some silica, barite, sulfide, and calcite veins and veinlets have occurred in the Masjed Daghi mineralization area. In this research, 26 doubly polished thin sections (wafers) were prepared and investigated. Four samples were taken from surface veins, while 22 samples were chosen from core samples (of 6 boreholes) of white and grey-white silica, and silica-barite veins. The fluid inclusion studies on 105 primary fluid inclusions indicated five phases for inclusions including: 1) liquid or gas, 2) liquid and gas, 3) liquid, gas, and solid, 4) liquid, gas, halite, and solid, and 5) liquid, gas, halite, and two types of solids. The data gained from fluid inclusions approved two mineralization fluids which caused porphyry and epithermal mineralizations. The porphyry fluid inclusions were homogenized in temperatures of 122°C to 550°C with a maximum of 700°C and average salinity of 55 wt% NaCl equivalent, while the epithermal inclusions indicated an average homogenization temperature of 186°C with an average salinity of 6.23 wt% NaCl equivalent.展开更多
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi...The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.展开更多
The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also refe...The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.展开更多
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the worl...The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.展开更多
The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in rece...The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.展开更多
The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with tot...The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed.展开更多
Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentr...Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.展开更多
1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province c...1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province contains sub-volcanic ore展开更多
Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, ...Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, followed by extensive magmatism in Cenozoic and Quaternary periods. Porphyry type mineralization developed in Ali Javad quartz monzonitic porphyry stock and Eocene pyroclastic and volcanic country rocks. Ali Javad porphyry intrusion has shoshonitic nature and shows characteristics of volcanic arc granitoids that it is have been emplaced in a post-collision tectonic setting. Alteration zones at the deposit demonstrated zoning which is comparable with Lowel-Guilbert model proposed for quartz-monzonite type porphyry copper deposits. Phyllic, argillic, silicic and propylitic alteration zones were observed at the surface while potassic alteration zone could be observed at depth in drill core samples. Mineralization was recognized both as supergene and hypogene, the latter was as veins, veinlets and disseminations. Dominant hypogene minerals were chalcopyrite, bornite, molybdenite, pyrite and magnetite while chalcocite, covellite and limonite were dominant supergene minerals. Four mineralization zones were observed in the deposit as leached, transitional, supergene and hypogene zones. Average grades were 0.75% for copper and 1.86 ppm for gold with 81.5 Mt proved reserve for copper and 37.8 Mt for gold.展开更多
The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinia...The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.展开更多
1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associate...1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associated with igneous activities either originating from lower crust or upper mantle,with contributions of crusts during the evolution of continental lithosphere.展开更多
Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran a...Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.展开更多
Geospatial Information System (GIS) provide tools to quantitatively analysis and combination of datasets from geological, geophysical, remote sensing and geochemical surveys for decision-making processes. Excellent co...Geospatial Information System (GIS) provide tools to quantitatively analysis and combination of datasets from geological, geophysical, remote sensing and geochemical surveys for decision-making processes. Excellent coverage of well-documented and good quality data enables testing of variable exploration modeling in an efficient way. The study area of this research is the most important part of Cu (Mo) porphyry—type mineralization belt in Iran. There are some well-known porphyry copper deposits in this region like Sarcheshmeh and Meiduk mines, but certainly there are same grounds to search for new porphyry deposits. The risks of developing mineral resources need to be known as accurately as possible, with regarding to all features those are effective in mineralization. These features can be recognized respect to Critical Genetic Factors (CGF’s) using Critical Recognition Criteria (CRC) for each type of mineralization. CGF’s can be employed for designing a Conceptual Genetic Model (CGM). Evidence maps create on the basis of CGM and then integrate together for production of Mineral Prospectivity Map (MPM). This map categorizes the areas based on their exploration importance. There are several techniques for creation of MPM. Interval Valued Fuzzy Sets (IVFSs) TOPSIS method was applied in this research. This method as a knowledge-driven method, allocate appropriate weights to layers on the basis of the effective membership, non membership, and non-certainty. The fundamental concept of TOPSIS is that the chosen alternatives should have the shortest distance from the positive ideal points (A*) and the farthest distance from negative ideal points (A-).展开更多
In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogen...In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,展开更多
Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore f...Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits.展开更多
: Zinccopperite (tentatively named) is a rare native alloy mineral discovered in quartz monzonite—porphyry in the Xifanping area, Yanyuan County, Sichuan Province. It is a new variety of zinc—copper alloy mineral fo...: Zinccopperite (tentatively named) is a rare native alloy mineral discovered in quartz monzonite—porphyry in the Xifanping area, Yanyuan County, Sichuan Province. It is a new variety of zinc—copper alloy mineral found for the first time in the porphyry-copper deposit in China. Its intergrown minerals are K—feldspar (mainly perthite), albite—oligoclase, quartz and biotite; and the associated minerals include pyrite and chalcopyrite. It is characterized by a golden reflection colour, being isotropic (isometric), with the grain size ranging from 10 to 50 μm, microhardness VHN10 = 190 kg/mm2, and reflectance RVM = 67.97%. Electron microprobe (Model JXA—733) analysis shows Cu = 59.15%–62.55% and Zn = 36.32%–39.85%. The crystallochemical formula is Cu6.27-7.0Zn4.0, simplified as Cu7Zn4.展开更多
Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision...Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.展开更多
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve...The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.展开更多
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
基金granted by the Geological Survey Program of China Geological Survey (Grant No.1212011086074 and 12120113036500)
文摘The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.
文摘The Masjed Daghi mineralization is located 30 km southeast of Jolfa city at the bank of Araxes River, northwest Iran. This area is situated in the Alborz-Azarbaijan structural zone of Iran. The most widespread rocks in the mineralization area are andesite and trachyandesite, while there are rock units of latite tuff, andesitic agglomerate, and hornblende porphyry basalt in eastern hills and Eocene flysch in the southern part of the area. Several intrusive bodies are present in the study area, from which the dominant intrusive rock hosting the mineralization is diorite porphyry. The mineralized rock units of the area are cut by different diorite ad mafic dikes. The most prevalent texture of mineralization is dissemination, while open space filling textures including veins and veinlets, are common as well. Diverse types of alteration including potassic, phyllic, argillic, silicification, and a little of carbonatization were recognized in the field and microscopic observations as well as by XRD. In addition to thick silica veins and stockwork zones, some silica, barite, sulfide, and calcite veins and veinlets have occurred in the Masjed Daghi mineralization area. In this research, 26 doubly polished thin sections (wafers) were prepared and investigated. Four samples were taken from surface veins, while 22 samples were chosen from core samples (of 6 boreholes) of white and grey-white silica, and silica-barite veins. The fluid inclusion studies on 105 primary fluid inclusions indicated five phases for inclusions including: 1) liquid or gas, 2) liquid and gas, 3) liquid, gas, and solid, 4) liquid, gas, halite, and solid, and 5) liquid, gas, halite, and two types of solids. The data gained from fluid inclusions approved two mineralization fluids which caused porphyry and epithermal mineralizations. The porphyry fluid inclusions were homogenized in temperatures of 122°C to 550°C with a maximum of 700°C and average salinity of 55 wt% NaCl equivalent, while the epithermal inclusions indicated an average homogenization temperature of 186°C with an average salinity of 6.23 wt% NaCl equivalent.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)a geological survey project(Grant No.DD20230054).
文摘The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.
基金jointly funded by the national key research and development program project“Strategic Mineral Information and Metallogenic Regularity of the Tethyan Metallogenic Domain”(2021YFC2901803)a project of the National Natural Science Foundation of China entitled“Geological Structure Mapping and Regional Comparative Study of the Tethyan Tectonic Domain”(92055314),International Geoscience Programme(IGCP-741)a project initiated by the China Geological Survey(DD20221910).
文摘The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites,quartz monzonite porphyries formed during the mineralization,and post-mineralization granite porphyries,which were formed at 223±3.7 Ma,218±4 Ma,and 207±3.9 Ma,respectively.The metallogenic age of the Pulang deposit is 213‒216 Ma.(4)The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites.The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity.The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust-and mantle-derived magmas.
基金funded by the National Scientific and Technological Basic Resources Investigation Program(2022FY101800)a project of the National Natural Science Foundation of China(42102087)+1 种基金a project of the China Postdoctoral Science Foundation(2022M712966)a major project of the Ministry of Science and Technology of the People’s Republic of China(2021QZKK0304)。
文摘The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.
基金funded by the Natural Science Foundation of China (No. U1303292)the Science and Technology Support Program of China (No. 2011BAB06B02)the China Geology Survey Program (No. 121211220926)
文摘The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.
基金This study was jointly funded by a project of the National Natural Science Foundation of China(42102087)a project of the China Postdoctoral Science Foundation(2022M712966)a key special project of the Ministry of Science and Technology of China(2021QZKK0304).
文摘The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed.
基金financially supported by the National Natural Science Foundation of China (grant No.41502076)the Leading Talents Plan Project of Science and Technology of Yunnan Province (grant No.2013HA001)the Science Research Fund of Yunnan Provincial Education Department (grant No.2015Y066)
文摘Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.
基金supported by NNSF (No.41572060)projects of CGS (NO.12120113095900)+2 种基金university and company cooperation (2012-01)YM Lab(2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province contains sub-volcanic ore
文摘Ali Javad porphyry Cu-Au deposit is located 20 Km north of Ahar city in Arasbaran metallogenic zone which is considered as a part of Alp-Himalayan mineralization belt. Magmatism in this area began in Late Cretaceous, followed by extensive magmatism in Cenozoic and Quaternary periods. Porphyry type mineralization developed in Ali Javad quartz monzonitic porphyry stock and Eocene pyroclastic and volcanic country rocks. Ali Javad porphyry intrusion has shoshonitic nature and shows characteristics of volcanic arc granitoids that it is have been emplaced in a post-collision tectonic setting. Alteration zones at the deposit demonstrated zoning which is comparable with Lowel-Guilbert model proposed for quartz-monzonite type porphyry copper deposits. Phyllic, argillic, silicic and propylitic alteration zones were observed at the surface while potassic alteration zone could be observed at depth in drill core samples. Mineralization was recognized both as supergene and hypogene, the latter was as veins, veinlets and disseminations. Dominant hypogene minerals were chalcopyrite, bornite, molybdenite, pyrite and magnetite while chalcocite, covellite and limonite were dominant supergene minerals. Four mineralization zones were observed in the deposit as leached, transitional, supergene and hypogene zones. Average grades were 0.75% for copper and 1.86 ppm for gold with 81.5 Mt proved reserve for copper and 37.8 Mt for gold.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB421007)the Science and Technology Leading Talents Training Plan Program of Yunnan Province (Grant No.2013HA001)
文摘The Xiangcheng-Luoji area is located in the conjunction of the southern part of the "Sanjiang" mineralization belt and the west margin of Yangtze craton. The geological studies were carried out to know the Indosinian large porphyry Cu polymetallic deposits. Recent studies revealed that the area existed in the superposition of Late Yanshanian acidic intrusive rock belt and developed Mo-Cu polymetallic mineralization where promising exploration results have been achieved. Through the systematic study of geochronology, formation age of the Renlin Mo-minieralization monzogranite is 81.7±1.1 Ma. Re-Os dating results concentrate on 82.34±1.2–88.27±1.23 Ma for the model ages of molbdenite of Tongchanggou Mo deposits, average age is 85 ± 2 Ma where seven data points constitute a good isochron which shows that they were the same period products of mineralization. Geochemical features shown that the rocks have a high content of SiO 2(66.59–77.36wt%), alkaline-rich(K2O=2.68–6.08wt%; Na2O=0.50–4.91wt%; K2O/Na2 O ratios are 0.71–5.56, where average ratio of 1.89) and have aluminum–rich features(Al2O3 10.38–15.15wt%) with σ values less than 3.3. Which indicate that they belong to the high-K calc-alkali to shoshonite series. Geochemistry of Yanshanian intrusions shows that rocks are enrich in LREE with obvious negative δEu anomalies, enrichment of trace elements like, LILE elements(Rb, Th, Ba) with a relative loss of Ba, and loss of high field strength elements(Nb, Ta, P, Ti) and HREE elements. The granite genetic classification diagram shows that the granites belong to A-type granite and formatted in syn-collision tectonic environment. Meanwhile, the Yanshanian granites also inherited the characteristics of island arc environment which formed in the process of crustal melting caused by upwelling of asthenospheric substances in the extensional tectonic background. The process of partial melting existed substances from the deep(lower crust or upper mantle) which have been added. In the Xiangcheng-Luoji area, monzogranite and granodiorite porphyry bodies are widely developed Mo polymetallic mineralization, the deep porphyry mineralization have great potential for geological prospecting.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0600501)the National Natural Science Foundation of China(NSFC)(Grant No.41430320).
文摘1 Introduction PCDs are generated in continental arcs in response to plate converging processes(subduction and collision)(Hou et al.,2009;Richards,2013).It is generally accepted that the formation of PCDs is associated with igneous activities either originating from lower crust or upper mantle,with contributions of crusts during the evolution of continental lithosphere.
文摘Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial $78r/S6Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.
文摘Geospatial Information System (GIS) provide tools to quantitatively analysis and combination of datasets from geological, geophysical, remote sensing and geochemical surveys for decision-making processes. Excellent coverage of well-documented and good quality data enables testing of variable exploration modeling in an efficient way. The study area of this research is the most important part of Cu (Mo) porphyry—type mineralization belt in Iran. There are some well-known porphyry copper deposits in this region like Sarcheshmeh and Meiduk mines, but certainly there are same grounds to search for new porphyry deposits. The risks of developing mineral resources need to be known as accurately as possible, with regarding to all features those are effective in mineralization. These features can be recognized respect to Critical Genetic Factors (CGF’s) using Critical Recognition Criteria (CRC) for each type of mineralization. CGF’s can be employed for designing a Conceptual Genetic Model (CGM). Evidence maps create on the basis of CGM and then integrate together for production of Mineral Prospectivity Map (MPM). This map categorizes the areas based on their exploration importance. There are several techniques for creation of MPM. Interval Valued Fuzzy Sets (IVFSs) TOPSIS method was applied in this research. This method as a knowledge-driven method, allocate appropriate weights to layers on the basis of the effective membership, non membership, and non-certainty. The fundamental concept of TOPSIS is that the chosen alternatives should have the shortest distance from the positive ideal points (A*) and the farthest distance from negative ideal points (A-).
基金funded by"State Key Laboratory of Geological Processes and Mineral Resources(GPMR200624),China University of Geosciences"
文摘In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,
基金supported by the National Key R&D Program of China (grant number 2018YFC0604101)the Public Science and Technology Research Funds Projects, Ministry of Land Resources of the People’s Republic of China (project nos. 201511017 and 201511022-05)+2 种基金the Basic Research Fund of the Chinese Academy of Geological Sciences (grant no. YYWF201608)the National Natural Science Foundation of China (grant no. 41402178)the Geological Survey project (grant no. DD20160026)
文摘Biotite is an important hydrated ferromagnesian silicate mineral in igneous rocks and porphyry deposits.The determination of chemical compositions of biotite plays an important role in both igneous petrology and ore forming processes.This paper summarizes research results of magmatic and hydrothermal biotites exemplified by the Lakange porphyry Cu–Mo deposit and the Qulong porphyry Cu deposit in the Gangdese porphyry–skarn metallogenic belt,Tibet.Biotite mineral chemistry can provide critical insights into classification,geothermometer,geothermobarometry,oxygen fugacity,petrogenesis and tectonic setting,evaluating magmatic-hydrothermal process by halogen and halogen fugacity ratios,and distinguishing between barren and mineralized rocks.Biotite provides the latest mineralogical evidence on metallogenic prognosis and prospecting evaluation for porphyry Cu polymetallic deposits or magmatic hydrothermal deposits.
文摘: Zinccopperite (tentatively named) is a rare native alloy mineral discovered in quartz monzonite—porphyry in the Xifanping area, Yanyuan County, Sichuan Province. It is a new variety of zinc—copper alloy mineral found for the first time in the porphyry-copper deposit in China. Its intergrown minerals are K—feldspar (mainly perthite), albite—oligoclase, quartz and biotite; and the associated minerals include pyrite and chalcopyrite. It is characterized by a golden reflection colour, being isotropic (isometric), with the grain size ranging from 10 to 50 μm, microhardness VHN10 = 190 kg/mm2, and reflectance RVM = 67.97%. Electron microprobe (Model JXA—733) analysis shows Cu = 59.15%–62.55% and Zn = 36.32%–39.85%. The crystallochemical formula is Cu6.27-7.0Zn4.0, simplified as Cu7Zn4.
基金supported by the National Key Research and Development Program of China (2022YFC2905001)the National Natural Science Foundation of China (42272093,42230813)+1 种基金China Scholarship Council projectthe Geological Survey project (DD20230054)
文摘Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.
基金supported by the National Key Research and Development Program of China(2018YFC0604102)the project of China Geological Survey(DD20190015)。
文摘The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.