Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of det...Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of determining the freight flow quantity, the transportation mode in each transit corridor while satisfying the freight demand at each West Africa transit country (Mali, Burkina Faso and Niger). The objective was to minimize in land transportation costs. In order to solve optimally and represent the problem, this research employed a linear programming model. The model was solved using Lingo Mathematic Application. The model results showed that port oriented freight logistics in west Africa ECOWAS region do not flow along optimal path and such incur longer time and higher logistics cost than is geographically necessary.展开更多
Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportati...Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportation(IT).Current IT systems rely mostly on road,rail,and sea transport,not inland waterway transport.Developing dry port(DP)terminals has been proven as a sustainable means of promoting and utilizing IT in the hinterland of seaport container terminals.Conventional DP systems consolidate container flows from/to seaports and integrate road and rail transportation modes in the hinterland which improves the sustainability of the whole logistics system.In this article,to extend literature on the sustainable development of different categories of IT terminals,especially DPs,and their varying roles,we examine the possibility of developing DP terminals within the framework of inland waterway container terminals(IWCTs).Establishing combined road–rail–inland waterway transport for observed container flows is expected to make the IT systems sustainable.As such,this article is the first to address the modelling of such DP systems.After mathematically formulating the problem of modelling DP systems,which entailed determining the number and location of DP terminals for IWCTs,their capacity,and their allocation of container flows,we solved the problem with a hybrid metaheuristic model based on the Bee Colony Optimisation(BCO)algorithmand themeasurement of alternatives and ranking according to compromise solution(i.e.,MARCOS)multi-criteria decision-making method.The results from our case study of the Danube region suggest that planning and developingDP terminals in the framework of IWCTs can indeed be sustainable,as well as contribute to the development of logistics networks,the regionalisation of river ports,and the geographic expansion of their hinterlands.Thus,the main contributions of this article are in proposing a novel DP concept variant,mathematically formulating the problems of its modelling,and developing an encompassing hybrid metaheuristic approach for treating the complex nature of the problem adequately.展开更多
为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概...为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概率潮流计算,获得节点电压与支路有功功率的概率密度函数,使用越限偏移量结合风险偏好型效用函数构建严重度函数,根据风险评估理论建立并计算风险评估指标。其次,在此基础上,提出一种计及SOP参数优化的FDN风险评估方法;以系统总风险最低为目标,建立计及SOP参数优化的FDN风险评估模型,采用粒子群优化算法结合基于三点估计的FDN风险评估方法对其进行求解,用得到的结果去配置SOP,并对此FDN进行风险评估。以3个IEEE 33节点网络通过三端口SOP互联形成的FDN为例,验证了所提风险评估方法的有效性,分析了SOP连续调节能力以及不同接入位置对FDN风险的影响。展开更多
文摘Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of determining the freight flow quantity, the transportation mode in each transit corridor while satisfying the freight demand at each West Africa transit country (Mali, Burkina Faso and Niger). The objective was to minimize in land transportation costs. In order to solve optimally and represent the problem, this research employed a linear programming model. The model was solved using Lingo Mathematic Application. The model results showed that port oriented freight logistics in west Africa ECOWAS region do not flow along optimal path and such incur longer time and higher logistics cost than is geographically necessary.
文摘Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportation(IT).Current IT systems rely mostly on road,rail,and sea transport,not inland waterway transport.Developing dry port(DP)terminals has been proven as a sustainable means of promoting and utilizing IT in the hinterland of seaport container terminals.Conventional DP systems consolidate container flows from/to seaports and integrate road and rail transportation modes in the hinterland which improves the sustainability of the whole logistics system.In this article,to extend literature on the sustainable development of different categories of IT terminals,especially DPs,and their varying roles,we examine the possibility of developing DP terminals within the framework of inland waterway container terminals(IWCTs).Establishing combined road–rail–inland waterway transport for observed container flows is expected to make the IT systems sustainable.As such,this article is the first to address the modelling of such DP systems.After mathematically formulating the problem of modelling DP systems,which entailed determining the number and location of DP terminals for IWCTs,their capacity,and their allocation of container flows,we solved the problem with a hybrid metaheuristic model based on the Bee Colony Optimisation(BCO)algorithmand themeasurement of alternatives and ranking according to compromise solution(i.e.,MARCOS)multi-criteria decision-making method.The results from our case study of the Danube region suggest that planning and developingDP terminals in the framework of IWCTs can indeed be sustainable,as well as contribute to the development of logistics networks,the regionalisation of river ports,and the geographic expansion of their hinterlands.Thus,the main contributions of this article are in proposing a novel DP concept variant,mathematically formulating the problems of its modelling,and developing an encompassing hybrid metaheuristic approach for treating the complex nature of the problem adequately.
文摘为分析智能软开关(soft open point,SOP)连续调节能力对柔性配电网(flexible distribution network,FDN)风险的影响。首先,实现基于三点估计的FDN风险评估方法;采用三点估计法结合交直流交替迭代法和Gram-Charlier级数展开法进行FDN概率潮流计算,获得节点电压与支路有功功率的概率密度函数,使用越限偏移量结合风险偏好型效用函数构建严重度函数,根据风险评估理论建立并计算风险评估指标。其次,在此基础上,提出一种计及SOP参数优化的FDN风险评估方法;以系统总风险最低为目标,建立计及SOP参数优化的FDN风险评估模型,采用粒子群优化算法结合基于三点估计的FDN风险评估方法对其进行求解,用得到的结果去配置SOP,并对此FDN进行风险评估。以3个IEEE 33节点网络通过三端口SOP互联形成的FDN为例,验证了所提风险评估方法的有效性,分析了SOP连续调节能力以及不同接入位置对FDN风险的影响。