In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ...In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.展开更多
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response thr...With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot.Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system.Based on retail-side energy trading market,this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations.This study establishes a mechanism model of energy market participants,and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage.Finally,in the case study,a typical user energy consumption scenario in winter is selected,showing market-clearing results and demand response effects on a typical day.Impact of transmission line constraints,energy supply equipment capacity,and other factors on clearing results and global surplus are compared and analyzed,verifying the effects of the proposed method on improving global surplus,enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.展开更多
How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy servic...How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.展开更多
Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the syst...Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the system characteristics of coupling are becoming more and more obvious and more complicated. The modeling, analysis and control methods of traditional single flow systems have not been applied directly. Therefore, it is necessary to study the modeling of multi-energy flow coupling, the power flow analysis, optimization and control method of heterogeneous energy flow, which plays the role of multi-energy flow synergy to avoid the adverse effects of coupling. This paper summarizes the current research situation of energy Internet at home and abroad from the aspects of modeling of multi-energy flow, power flow calculation and optimal dispatching, and analyzes the existing problems in the research of these aspects.展开更多
In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each s...In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.展开更多
The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipme...The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipment for an electricity-gas-thermal IES, and an integrated multi-energy flow calculation model of the IES is constructed. A simplified calculation method for the compressor model in a natural gas network, one which is not included in a loop and works in constant compression ratio mode, is also proposed based on the concept of model reduction. In addition, a numerical conversion method for dealing with the conflict between nominal value and per unit value in the multi-energy flow calculation of IES is described. A case study is given to verify the correctness and speed of the proposed method, and the electricity-gas-thermal coupling interaction characteristics among sub-systems are studied.展开更多
In recent years,as a promising option to improve the overall efficiency of energy utilization and absorptive capacity of renewable energies,the integrated energy system(IES)has raised great interest in academies and i...In recent years,as a promising option to improve the overall efficiency of energy utilization and absorptive capacity of renewable energies,the integrated energy system(IES)has raised great interest in academies and industries.Multi-energy flow(MF)calculation,which differs from the traditional power flow calculation,plays a basic role in analyzing IES.MF calculation based on Newton-Raphson method has been proposed in literature,but its calculation efficiency is not high.In this paper,a fast decoupled MF(FDMF)calculation method for IES is proposed.Its main idea is to replace the original Jacobian matrix of MF calculation based on Newton-Raphson method with a diagonal and constant Jacobian matrix by the transformation.The simulations demonstrate that the proposed FDMF method can increase the calculation efficiency by at least 4 times with high calculation accuracy.展开更多
Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure o...Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.展开更多
The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 1...The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 100%renewable energy generation by 2050.A major challenge is balancing load and generation.In addition,the current and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility,so-called indirect electric energy storage options,are investigated.A conclusion is drawn with a summary of experiences and lessons learned in Denmark related to wind power development.展开更多
As a typical scenario of distributed integrated multi-energy system(DIMS),industrial park contains complex production constraints and strong associations between industrial productions and energy demands.The industria...As a typical scenario of distributed integrated multi-energy system(DIMS),industrial park contains complex production constraints and strong associations between industrial productions and energy demands.The industrial production process(IPP)consists of controllable subtasks and strict timing constraints.Taking IPP as a control variable of optimal scheduling,it is an available approach that models the IPP as material flow into an extension energy hub(EH)to achieve the optimization of industrial park.In this paper,considering the coupling between the production process and energy demands,a model of IPP is proposed by dividing the process into different adjustable steps,including continuous subtask,discrete subtask,and storage subtask.Then,a transport model of material flow is used to describe the IPP in an industrial park DIMS.Based on the concept of EH,a universal extension EH model is proposed considering the coupling among electricity,heat,cooling,and material.Furthermore,an optimal scheduling method for industrial park DIMS is proposed to improve the energy efficiency and operation economy.Finally,a case study of a typical battery factory is shown to illustrate the proposed method.The simulation results demonstrate that such a method reduces the operation cost and accurately reflects the operation state of the industrial factory.展开更多
An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy...An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy inertia-based power support strategy.The definition and modelling of gas inertia are given first to demonstrate its ability to mitigate power fluctuations.Since partial utilization of gas inertia can influence overall gas network parameters,the gas network is modelled with an analysis of network dynamic changes.A multi-energy inertia-based power support model and strategy are then proposed for fully using gas-thermal inertia resources in integrated energy systems.The influence of gas network constraints on strategy,economy and power outputs is analyzed.Special circumstances where the gas network can be simplified are introduced.This improves the response speed and application value.The feasibility and effectiveness of the proposed strategy are assessed using a real scenario.展开更多
Carbon neutrality is an ambitious goal that has been promulgated to be achieved on or before 2060.However,most of the current energy policies focus more on carbon emission reduction,efficiency and high penetration of ...Carbon neutrality is an ambitious goal that has been promulgated to be achieved on or before 2060.However,most of the current energy policies focus more on carbon emission reduction,efficiency and high penetration of renewable energy.Thus,this paper presented a review strategy towards carbon neutrality by presenting the concept of a multi-energy system(MES)in terms of its technologies,configuration,modelling and feasibility as zero-emission equipment.The paper addressed some prominent challenges associated with zero-carbon multi-energy systems(ZCMES).Various proven solutions in the extant studies that have been affirmed to alleviate some of these challenges were presented.In the end,we identified and summarised the current research gaps,and the future directions to ensure the feasibility of ZCMES as a primary strategy towards the actualization of carbon neutrality.Hence,this review work serves as a reference for revising the current energy policies to incorporate a carbon neutrality framework.展开更多
Multi-energy integrations provide great opportunities for economic and efficient resource utilization. In the meantime, power system operation requires enough flexible resources to deal with contingencies such as tran...Multi-energy integrations provide great opportunities for economic and efficient resource utilization. In the meantime, power system operation requires enough flexible resources to deal with contingencies such as transmission line tripping. Besides economic benefits, this paper focuses on the security benefits that can be provided by multi-energy integrations. This paper first proposes an operation scheme to coordinate multiple energy production and local system consumption considering transmission networks. The integrated flexibility model, constructed by the feasible region of integrated demand response(IDR), is then formulated to aggregate and describe local flexibility. Combined with system security constraints, a multi-energy system operation model is formulated to schedule multiple energy production, transmission, and consumption. The effects of local system flexibility on alleviating power flow violations during N-1 line tripping contingencies are then analyzed through a multi-energy system case. The results show that local system flexibility can not only reduce the system operation costs, but also reduce the probability of power flow congestion or violations by approximately 68.8% during N-1 line tripping contingencies.展开更多
This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)co...This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility.展开更多
With the gradual upgradation of global energy consumption and the associated development of multi-energy sources,the pace of unified energy planning and design has been accelerated and the concept of multi-energy syst...With the gradual upgradation of global energy consumption and the associated development of multi-energy sources,the pace of unified energy planning and design has been accelerated and the concept of multi-energy system(MES)has been formed.The industrial structure of industrial park(IP)consists of production and marketing of multi-energy sources,which makes IP become an ideal application scenario for MES.The coupling between multi-sources raises the complexity level of IP,which requires the demand side analysis in IP as it enables customers to actively participate in energy planning and development.This paper presents the concept and operation strategies of integrated demand response(IDR),and its model classification is analyzed in detail.Optimization model and IDR with varying time period are studied in IP to determine their impacts on the system.A detailed survey of different techniques in both operation strategies and model classification is presented and the classification is based on pros and cons.Finally,key issues and outlooks are discussed.展开更多
Focused on life,consumption,and leisure,communities have been regarded as the basic unit of energy use in a city owing to rapid urbanization,whose energy use density continues to increase.Moreover,community integrated...Focused on life,consumption,and leisure,communities have been regarded as the basic unit of energy use in a city owing to rapid urbanization,whose energy use density continues to increase.Moreover,community integrated energy systems(CIESs)in the rapid development stage have become embedded,small,and self-sufficient energy ecosystems within cities because of their environmental and economic benefits.CIESs face a competitive energy trading environment that comprises numerous entities and complicated relationships.This paper presents an extensive review of various issues related to CIES trading.First,the concepts,types,and resources of CIESs are described.Second,the trading patterns and strategies of CIESs are reviewed from the four perspectives of the trading objects:community-to-peer(C2P),peer-to-peer(P2P),community-to-community(C2C),and community-to-grid(C2G).Third,a tri-layer trading framework and the features of CIESs that participate in combined multienergy markets are proposed.Last,the key issues in CIES trading are summarized.展开更多
In the traditional power system demand response, customers respond to electricity price or incentive and change their original power consumption pattern accordingly to gain additional benefits. With the development of...In the traditional power system demand response, customers respond to electricity price or incentive and change their original power consumption pattern accordingly to gain additional benefits. With the development of multi-energy systems (MES) in which electricity, heat, natural gas and other forms of energy are coupled with each other, all types of energy customers are able to participate in demand response, leading to the concept of integrated demand response (IDR). In IDR, energy consumers can response not only by reducing energy consumption or opting for off-peak energy consumption but also by changing the type of the consumed energy. Taking the traditional demand response in power system as a starting point, the studies of the fundamental theory, framework design and potential estimation of demand response in power system are reviewed, and the practical cases and software development of demand response are introduced. Finally, the current theoretical research and application of IDR are assessed.展开更多
With the wide application of integrated energy systems(IES),the degree of coupling between different types of energy sources is further strengthened,and the mechanism of fault development tends to be complicated.There...With the wide application of integrated energy systems(IES),the degree of coupling between different types of energy sources is further strengthened,and the mechanism of fault development tends to be complicated.Therefore,in order to improve the accuracy and practicability of the reliability assessment of IESs,a sequential simulation reliability assessment method considering multi-energy flow and thermal inertia is proposed in this paper.In this method,the IES structure model is constructed with the combined cooling,heating and power(CCHP)unit as the core equipment,combining with the new energy source to realize the comprehensive energy power flow calculation considering any loss.Then,a load reduction optimization model is established,considering the importance of load and operational economy,in the system status analysis.Furthermore,the heat supply reliability index is corrected taking into account the transmission delay characteristics and terminal thermal inertia.A case study based on the 20-node and the analysis of the influence factors demonstrates the validity of the proposed method.展开更多
基金funded by the National Natural Science Foundation of China(52222704 and 52177107).
文摘In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
基金supported by National Key R&D Program of China(2018YFB0905000)Science and Technology Project of SGCC(SGTJDK00DWJS1800232)+2 种基金National Natural Science Foundation of China(51977141)Joint Research Fund of the National Science Fund of China(U1766210)conducted in cooperation of APPLIED ENERGY UNiLAB-DEM。
文摘With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot.Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system.Based on retail-side energy trading market,this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations.This study establishes a mechanism model of energy market participants,and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage.Finally,in the case study,a typical user energy consumption scenario in winter is selected,showing market-clearing results and demand response effects on a typical day.Impact of transmission line constraints,energy supply equipment capacity,and other factors on clearing results and global surplus are compared and analyzed,verifying the effects of the proposed method on improving global surplus,enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.
基金supported in part by the National Key R&D Program of China(2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(SGTJDK 00DWJS1800232)。
文摘How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs.
文摘Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the system characteristics of coupling are becoming more and more obvious and more complicated. The modeling, analysis and control methods of traditional single flow systems have not been applied directly. Therefore, it is necessary to study the modeling of multi-energy flow coupling, the power flow analysis, optimization and control method of heterogeneous energy flow, which plays the role of multi-energy flow synergy to avoid the adverse effects of coupling. This paper summarizes the current research situation of energy Internet at home and abroad from the aspects of modeling of multi-energy flow, power flow calculation and optimal dispatching, and analyzes the existing problems in the research of these aspects.
基金supported by the National Natural Science Foundation of China(51877174)the Natural Science Basic Research Key Project of Shaanxi(2024JC-ZDXM-31)the Technology Innovation Leading Program of Shaanxi(2024-QCY-KXJ-032).
文摘In order to improve the efficiency of energy utilization,the integrated energy system(IES)has emerged.The IES typically acts as a whole system during operations,the subsystems are separated,and the interests of each system are independent.In this paper,considering the relationship between the various energy systems,non-cooperative game theory is used to establish the optimal dispatch model.The proposed model mainly relies on the relationship between the cooperation and competition among various subsystems to obtain the maximum benefit they can accept.Furthermore,the basic definition is combined with the particle swarm optimization algorithm to solve the problem.The results show that the optimization strategy proposed in this paper can operate safely and reliably,and effectively distribute the benefits of each energy system.
基金supported by National Natural Science Foundation of China(52077193).
文摘The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipment for an electricity-gas-thermal IES, and an integrated multi-energy flow calculation model of the IES is constructed. A simplified calculation method for the compressor model in a natural gas network, one which is not included in a loop and works in constant compression ratio mode, is also proposed based on the concept of model reduction. In addition, a numerical conversion method for dealing with the conflict between nominal value and per unit value in the multi-energy flow calculation of IES is described. A case study is given to verify the correctness and speed of the proposed method, and the electricity-gas-thermal coupling interaction characteristics among sub-systems are studied.
基金supported in part by the National Natural Science Foundation of China(No.51777067)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS2019-08)the scientific and technological project of State Grid Corporation of China“State Estimation of Integrated Energy Systems Considering Different Time Scales”(No.52110418002R)
文摘In recent years,as a promising option to improve the overall efficiency of energy utilization and absorptive capacity of renewable energies,the integrated energy system(IES)has raised great interest in academies and industries.Multi-energy flow(MF)calculation,which differs from the traditional power flow calculation,plays a basic role in analyzing IES.MF calculation based on Newton-Raphson method has been proposed in literature,but its calculation efficiency is not high.In this paper,a fast decoupled MF(FDMF)calculation method for IES is proposed.Its main idea is to replace the original Jacobian matrix of MF calculation based on Newton-Raphson method with a diagonal and constant Jacobian matrix by the transformation.The simulations demonstrate that the proposed FDMF method can increase the calculation efficiency by at least 4 times with high calculation accuracy.
基金supported by the National Natural Science Foundation of China [No.51579029]Fundamental Research Funds for the Central Universities (No. DUT19JC43)
文摘Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.
文摘The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 100%renewable energy generation by 2050.A major challenge is balancing load and generation.In addition,the current and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility,so-called indirect electric energy storage options,are investigated.A conclusion is drawn with a summary of experiences and lessons learned in Denmark related to wind power development.
基金supported by the National Nature Science Foundation of China(No.51977005)
文摘As a typical scenario of distributed integrated multi-energy system(DIMS),industrial park contains complex production constraints and strong associations between industrial productions and energy demands.The industrial production process(IPP)consists of controllable subtasks and strict timing constraints.Taking IPP as a control variable of optimal scheduling,it is an available approach that models the IPP as material flow into an extension energy hub(EH)to achieve the optimization of industrial park.In this paper,considering the coupling between the production process and energy demands,a model of IPP is proposed by dividing the process into different adjustable steps,including continuous subtask,discrete subtask,and storage subtask.Then,a transport model of material flow is used to describe the IPP in an industrial park DIMS.Based on the concept of EH,a universal extension EH model is proposed considering the coupling among electricity,heat,cooling,and material.Furthermore,an optimal scheduling method for industrial park DIMS is proposed to improve the energy efficiency and operation economy.Finally,a case study of a typical battery factory is shown to illustrate the proposed method.The simulation results demonstrate that such a method reduces the operation cost and accurately reflects the operation state of the industrial factory.
基金supported by National Key R&D Program of China(No.2019YFE0118000).
文摘An integrated energy system with multiple types of energy can support power shortages caused by the uncertainty of renewable energy.With full consideration of gas network constraints,this paper proposes a multi-energy inertia-based power support strategy.The definition and modelling of gas inertia are given first to demonstrate its ability to mitigate power fluctuations.Since partial utilization of gas inertia can influence overall gas network parameters,the gas network is modelled with an analysis of network dynamic changes.A multi-energy inertia-based power support model and strategy are then proposed for fully using gas-thermal inertia resources in integrated energy systems.The influence of gas network constraints on strategy,economy and power outputs is analyzed.Special circumstances where the gas network can be simplified are introduced.This improves the response speed and application value.The feasibility and effectiveness of the proposed strategy are assessed using a real scenario.
基金This work was supported in part by the Natural Science Foundation of China under Grants 61873118in part by the Shenzhen Committee on Science and Innovations under Grant GJHZ20180411143603361in part by the Department of Science and Technology of Guangdong Province under Grant 2018A050506003.
文摘Carbon neutrality is an ambitious goal that has been promulgated to be achieved on or before 2060.However,most of the current energy policies focus more on carbon emission reduction,efficiency and high penetration of renewable energy.Thus,this paper presented a review strategy towards carbon neutrality by presenting the concept of a multi-energy system(MES)in terms of its technologies,configuration,modelling and feasibility as zero-emission equipment.The paper addressed some prominent challenges associated with zero-carbon multi-energy systems(ZCMES).Various proven solutions in the extant studies that have been affirmed to alleviate some of these challenges were presented.In the end,we identified and summarised the current research gaps,and the future directions to ensure the feasibility of ZCMES as a primary strategy towards the actualization of carbon neutrality.Hence,this review work serves as a reference for revising the current energy policies to incorporate a carbon neutrality framework.
基金supported by State Grid Corporation of China “Research on Multi-energy System Energy Conversion Simulation and Energy Efficiency Evaluation”(No.SGTYHT/18-JS-206)。
文摘Multi-energy integrations provide great opportunities for economic and efficient resource utilization. In the meantime, power system operation requires enough flexible resources to deal with contingencies such as transmission line tripping. Besides economic benefits, this paper focuses on the security benefits that can be provided by multi-energy integrations. This paper first proposes an operation scheme to coordinate multiple energy production and local system consumption considering transmission networks. The integrated flexibility model, constructed by the feasible region of integrated demand response(IDR), is then formulated to aggregate and describe local flexibility. Combined with system security constraints, a multi-energy system operation model is formulated to schedule multiple energy production, transmission, and consumption. The effects of local system flexibility on alleviating power flow violations during N-1 line tripping contingencies are then analyzed through a multi-energy system case. The results show that local system flexibility can not only reduce the system operation costs, but also reduce the probability of power flow congestion or violations by approximately 68.8% during N-1 line tripping contingencies.
基金financially supported by China Scholarship Council(CSC)(No.201804910516 and No.202106070041)。
文摘This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility.
基金supported by National Key R&D Program of China(No.2017YFB0903300)National Science Foundation of China(No.51777065)Beijing Natural Science Foundation(No.3182037).
文摘With the gradual upgradation of global energy consumption and the associated development of multi-energy sources,the pace of unified energy planning and design has been accelerated and the concept of multi-energy system(MES)has been formed.The industrial structure of industrial park(IP)consists of production and marketing of multi-energy sources,which makes IP become an ideal application scenario for MES.The coupling between multi-sources raises the complexity level of IP,which requires the demand side analysis in IP as it enables customers to actively participate in energy planning and development.This paper presents the concept and operation strategies of integrated demand response(IDR),and its model classification is analyzed in detail.Optimization model and IDR with varying time period are studied in IP to determine their impacts on the system.A detailed survey of different techniques in both operation strategies and model classification is presented and the classification is based on pros and cons.Finally,key issues and outlooks are discussed.
基金supported by the National Key Research and Development Program of China(No.2017YFA0700300)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY221124).
文摘Focused on life,consumption,and leisure,communities have been regarded as the basic unit of energy use in a city owing to rapid urbanization,whose energy use density continues to increase.Moreover,community integrated energy systems(CIESs)in the rapid development stage have become embedded,small,and self-sufficient energy ecosystems within cities because of their environmental and economic benefits.CIESs face a competitive energy trading environment that comprises numerous entities and complicated relationships.This paper presents an extensive review of various issues related to CIES trading.First,the concepts,types,and resources of CIESs are described.Second,the trading patterns and strategies of CIESs are reviewed from the four perspectives of the trading objects:community-to-peer(C2P),peer-to-peer(P2P),community-to-community(C2C),and community-to-grid(C2G).Third,a tri-layer trading framework and the features of CIESs that participate in combined multienergy markets are proposed.Last,the key issues in CIES trading are summarized.
基金supported by the Major Smart Grid Joint Project of National Natural Science Foundation of China and State Grid(No.U1766212)International(Regional)Joint Research Project of National Natural Science Foundation of China(No.71961137004).
文摘In the traditional power system demand response, customers respond to electricity price or incentive and change their original power consumption pattern accordingly to gain additional benefits. With the development of multi-energy systems (MES) in which electricity, heat, natural gas and other forms of energy are coupled with each other, all types of energy customers are able to participate in demand response, leading to the concept of integrated demand response (IDR). In IDR, energy consumers can response not only by reducing energy consumption or opting for off-peak energy consumption but also by changing the type of the consumed energy. Taking the traditional demand response in power system as a starting point, the studies of the fundamental theory, framework design and potential estimation of demand response in power system are reviewed, and the practical cases and software development of demand response are introduced. Finally, the current theoretical research and application of IDR are assessed.
文摘With the wide application of integrated energy systems(IES),the degree of coupling between different types of energy sources is further strengthened,and the mechanism of fault development tends to be complicated.Therefore,in order to improve the accuracy and practicability of the reliability assessment of IESs,a sequential simulation reliability assessment method considering multi-energy flow and thermal inertia is proposed in this paper.In this method,the IES structure model is constructed with the combined cooling,heating and power(CCHP)unit as the core equipment,combining with the new energy source to realize the comprehensive energy power flow calculation considering any loss.Then,a load reduction optimization model is established,considering the importance of load and operational economy,in the system status analysis.Furthermore,the heat supply reliability index is corrected taking into account the transmission delay characteristics and terminal thermal inertia.A case study based on the 20-node and the analysis of the influence factors demonstrates the validity of the proposed method.