A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is p...A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is placed on the ceiling of a temperature-controlled space using a metal net. Owing to this structure, the tube is deformed by its weight. This deformation has a significant influence on heat transfer and flow characteristics. Therefore, an air injection method, in which air and water are injected simultaneously into the tube, is developed for preventing the deformation of the tube. In this study, bedding metal rods were used instead of a metal net. The influence of the pitch length of the metal rods (5 - 15 cm) and the width of the polyethylene tube 15, 20, 25, 30, and 35 cm was examined experimentally. The length of the polyethylene tube was 178 cm. The air flow rate was 9.5 × 10-5 m3/s. The water flow rates were 60, 80, 100, 120, and 140 mL/min. Results show that the thermal response improved because of air injection. In particular, the temperature at steady state increased, and steady state was attained approximately 1.2 - 3 times faster with air injection than without air injection. The optimum pitch length of the metal rods and the range of the optimum width of the polyethylene tube were 8 cm and 20 - 25 cm, respectively, with and without air injection.展开更多
Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influ...Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influence of the internal structure of the silo on the granular flow.In this work,a silo with a central decompression tube is studied through experimental measurements and discrete element methods.Then,the influences of the central decompression tube on the flow behavior of grains and wall pressure are analyzed.Results show that the grains are in mass flow in the silo without a central decompression tube,while the grains are in funnel flow in the silo with a central decompression tube.Moreover,regardless of whether there is a central decompression tube in the silo,the maximum pressure appears at the top of the conical silo.In the lower part of the silo,the wall pressure of the silo with a central decompression tube is lower than that of the silo without a central decompression tube.Therefore,a silo with a central decompression tube is more conducive to grain storage and discharge than a silo without a central decompression tube.展开更多
Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorat...Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by con...To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.展开更多
In order to investigate the characteristics of a vertical axial flow pump under various clearances of flare tube, the bell-shaped inlet and box culvert outlet channels with flare tube are studied numerically and exper...In order to investigate the characteristics of a vertical axial flow pump under various clearances of flare tube, the bell-shaped inlet and box culvert outlet channels with flare tube are studied numerically and experimentally. Then, the cases of inlet and outlet channels with the least hydraulic loss are selected to form an integral pump system, for which both numerical simulation and experimental investigation are carried out. The numerical results agree well with the experimental data. It is shown that the clearances of the interfaces between different components of the pump system have a significant impact on the internal flow structure, turbulent entropy and hydraulic performance of the inlet and outlet channels. For the cases of normalized bottom clearance less than 0.5 and normalized top clearance larger than 0.4, the internal flow and hydraulic performance indexes of inlet and outlet channels are relatively poor. There also exists a critical clearance in either inlet or outlet channel at which the hydraulic loss reaches the maximum. The results serve as an important reference for the design as well as safe and efficient operation of the vertical axial flow pump system.展开更多
The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two ...The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two cylinders. The volume of fluid method is used to track the motion of liquid falling film and the gas-liquid interface. The effect of flow characteristics on heat and transfer coefficient may be remarkable, although it has been neglected in previous studies. The velocity distribution and the film thickness characteristics on the top tube, some special flow characteristics on the bottom tube, intertube flow modes and effect of liquid feeder height on flow characteristics have been studied. Our simulations indicate that 1) the velocity distributions of the upper and lower parts of the tube are not strictly symmetric and non- uniform, 2) the film thickness depends on flow rate and angular distributions, 3) the flow characteristics of the top tube are different from those of the bottom tube, 4) three principal and two intermediate transition modes are distinguished, and 5) the liquid feed height plays an important role on the formation of falling film. The numerical results are in a good agreement with the theoretical values by the Nusselt model and the reported results.展开更多
文摘A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is placed on the ceiling of a temperature-controlled space using a metal net. Owing to this structure, the tube is deformed by its weight. This deformation has a significant influence on heat transfer and flow characteristics. Therefore, an air injection method, in which air and water are injected simultaneously into the tube, is developed for preventing the deformation of the tube. In this study, bedding metal rods were used instead of a metal net. The influence of the pitch length of the metal rods (5 - 15 cm) and the width of the polyethylene tube 15, 20, 25, 30, and 35 cm was examined experimentally. The length of the polyethylene tube was 178 cm. The air flow rate was 9.5 × 10-5 m3/s. The water flow rates were 60, 80, 100, 120, and 140 mL/min. Results show that the thermal response improved because of air injection. In particular, the temperature at steady state increased, and steady state was attained approximately 1.2 - 3 times faster with air injection than without air injection. The optimum pitch length of the metal rods and the range of the optimum width of the polyethylene tube were 8 cm and 20 - 25 cm, respectively, with and without air injection.
基金We would like to acknowledge the finical support by the Key Laboratory of Agro-Products Postharvest Handling,Ministry of Agriculture support(Grant No.KLAPPH2-2017-04).
文摘Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influence of the internal structure of the silo on the granular flow.In this work,a silo with a central decompression tube is studied through experimental measurements and discrete element methods.Then,the influences of the central decompression tube on the flow behavior of grains and wall pressure are analyzed.Results show that the grains are in mass flow in the silo without a central decompression tube,while the grains are in funnel flow in the silo with a central decompression tube.Moreover,regardless of whether there is a central decompression tube in the silo,the maximum pressure appears at the top of the conical silo.In the lower part of the silo,the wall pressure of the silo with a central decompression tube is lower than that of the silo without a central decompression tube.Therefore,a silo with a central decompression tube is more conducive to grain storage and discharge than a silo without a central decompression tube.
基金supported by the National Basic Research Program of China (973 Program)(Grant No.2009CB219804)the National Scientific and Technical Supporting Program of China(Grant No.2011BAA04B02)
文摘Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59995550-3) .
文摘To explore the condensation characteristics of vapor flow inside vertical small-diameter tubes, the classical Nusselt theory is revised and an analytical model with variable tube wall temperature is established by considering the effect of surface tension exerted by condensate film bending as well as the effect of shear stress on vapor-liquid interface. The effects of various factors including tube wall temperature and gravityon flow condensation in small-diameter tubes are analyzed theoretically to show the heat transfer characteristics. Comparison with the experimental data indicates that the proposed analytical model is fit to reveal the fundamental characteristics of flow condensation heat transfer in vertical small-diameter tube.
基金supported by the National Natural Science Foundation of China(Grant Nos.52079057,52106043)the China Postdoctoral Science Foundation(Grant No.2022M711376).
文摘In order to investigate the characteristics of a vertical axial flow pump under various clearances of flare tube, the bell-shaped inlet and box culvert outlet channels with flare tube are studied numerically and experimentally. Then, the cases of inlet and outlet channels with the least hydraulic loss are selected to form an integral pump system, for which both numerical simulation and experimental investigation are carried out. The numerical results agree well with the experimental data. It is shown that the clearances of the interfaces between different components of the pump system have a significant impact on the internal flow structure, turbulent entropy and hydraulic performance of the inlet and outlet channels. For the cases of normalized bottom clearance less than 0.5 and normalized top clearance larger than 0.4, the internal flow and hydraulic performance indexes of inlet and outlet channels are relatively poor. There also exists a critical clearance in either inlet or outlet channel at which the hydraulic loss reaches the maximum. The results serve as an important reference for the design as well as safe and efficient operation of the vertical axial flow pump system.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 20976118).
文摘The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two cylinders. The volume of fluid method is used to track the motion of liquid falling film and the gas-liquid interface. The effect of flow characteristics on heat and transfer coefficient may be remarkable, although it has been neglected in previous studies. The velocity distribution and the film thickness characteristics on the top tube, some special flow characteristics on the bottom tube, intertube flow modes and effect of liquid feeder height on flow characteristics have been studied. Our simulations indicate that 1) the velocity distributions of the upper and lower parts of the tube are not strictly symmetric and non- uniform, 2) the film thickness depends on flow rate and angular distributions, 3) the flow characteristics of the top tube are different from those of the bottom tube, 4) three principal and two intermediate transition modes are distinguished, and 5) the liquid feed height plays an important role on the formation of falling film. The numerical results are in a good agreement with the theoretical values by the Nusselt model and the reported results.