Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and globa...Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and global map cannot be previously known. As a result, ICP algorithm will take much amount of iterations to reach convergence. On the other hand,establishment of correspondence is done by global searching, which requires enormous computational time. To overcome the two problems,a fast ICP-SLAM with rough alignment and narrowing-scale nearby searching is proposed. As for the decrease of iterative times,rough alignment based on initial pose matrix is proposed. In detail,initial pose matrix is obtained by micro-electro-mechanical system( MEMS) magnetometer and global landmarks. Then rough alignment will be applied between current scan frame and global map at the beginning of ICP algorithm with initial pose matrix. As for accelerating the establishment of correspondence, narrowingscale nearby searching with dynamic threshold is proposed,where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM,the experimental results show that the amount of iteration for ICP algorithm to reach convergence reduces to 92. 34% and ICP algorithm runtime reduces to 98. 86% on average. In addition,computational cost is kept in a stable level due to the eliminating of the accumulation of computational consumption. Moreover,great improvement can also been achieved in SLAM quality and robustness.展开更多
文摘Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and global map cannot be previously known. As a result, ICP algorithm will take much amount of iterations to reach convergence. On the other hand,establishment of correspondence is done by global searching, which requires enormous computational time. To overcome the two problems,a fast ICP-SLAM with rough alignment and narrowing-scale nearby searching is proposed. As for the decrease of iterative times,rough alignment based on initial pose matrix is proposed. In detail,initial pose matrix is obtained by micro-electro-mechanical system( MEMS) magnetometer and global landmarks. Then rough alignment will be applied between current scan frame and global map at the beginning of ICP algorithm with initial pose matrix. As for accelerating the establishment of correspondence, narrowingscale nearby searching with dynamic threshold is proposed,where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM,the experimental results show that the amount of iteration for ICP algorithm to reach convergence reduces to 92. 34% and ICP algorithm runtime reduces to 98. 86% on average. In addition,computational cost is kept in a stable level due to the eliminating of the accumulation of computational consumption. Moreover,great improvement can also been achieved in SLAM quality and robustness.