To improve the quality of the steel-concrete composite segment of the box girder,to ensure the compactness of concrete to avoid debonding and to enhance the fatigue strength of concrete are critical to the concrete pr...To improve the quality of the steel-concrete composite segment of the box girder,to ensure the compactness of concrete to avoid debonding and to enhance the fatigue strength of concrete are critical to the concrete preparation for such site. Furthermore,the coordination ability to deformation between steel and concrete is also important because of great difference of the elastic modulus between them. Concrete for the steel-concrete composite segment with high fluidity,excellent crack resistance and low shrinkage was prepared by adding efficient poly-carboxylic water-reducing agent,high quality fly ash and expansion agent to it. The quality of the concrete of the half partial testing block showed that the optimal mix proportion of polypropylene fiber reinforced concrete had achieved expected effect,ensured high quality,thus meeting the requirements of construction.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
In steel-concrete composite twin-girder decks, wide concrete slab would undergo significant shear lag warping effect, including positive and negative. Some researchers have investigated the positive shear lag of compo...In steel-concrete composite twin-girder decks, wide concrete slab would undergo significant shear lag warping effect, including positive and negative. Some researchers have investigated the positive shear lag of composite decks by means of one-dimensional line model, while the studies on the negative shear lag have not yet been reported until now. In this study, a new one-dimensional analytical model of composite twin-girder decks is first proposed based on the model proposed by Dezi et al. Besides slab shear lag effect and partial connection at slab-girder interface which have been included in the model of Dezi et al., the particularity of the proposed model relies on its ability to account for variation characteristic of cross-section. Verification of the analytical model is later conducted through comparison of results from the analytical analysis and elaborate FE analysis for a simply supported composite deck with increasing depth and a two-span continuous one with decreasing depth. Finally, three kinds of structural forms of composite twin-girder decks, including cantilever, simply supported and continuous decks, are selected to carry out the analysis of positive and negative shear lag behaviors by means of the analytical model. The influences of cross-sectional variation characteristic and load type on positive and negative shear lag behaviors are mainly investigated. Additionally, a new definition on effective width for considering simultaneously positive and negative shear lag behaviors is proposed. The results from the proposed analytical model and EC4 specification are compared to provide suggestions for designers and checkers. In this study, the proposed analytical model can provide a powerful numerical tool for researchers to conduct the further investigation, and the analysis on shear lag and effective width can assist in design analysis of composite twin-girder decks.展开更多
Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al...Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.展开更多
文摘To improve the quality of the steel-concrete composite segment of the box girder,to ensure the compactness of concrete to avoid debonding and to enhance the fatigue strength of concrete are critical to the concrete preparation for such site. Furthermore,the coordination ability to deformation between steel and concrete is also important because of great difference of the elastic modulus between them. Concrete for the steel-concrete composite segment with high fluidity,excellent crack resistance and low shrinkage was prepared by adding efficient poly-carboxylic water-reducing agent,high quality fly ash and expansion agent to it. The quality of the concrete of the half partial testing block showed that the optimal mix proportion of polypropylene fiber reinforced concrete had achieved expected effect,ensured high quality,thus meeting the requirements of construction.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
基金supported by the Fundamental Research Fund for the Central Universities(Grant No.2015JBM069)the Research Fund for Talented Scholars of Beijing Jiaotong University(Grant No.2016RC026)
文摘In steel-concrete composite twin-girder decks, wide concrete slab would undergo significant shear lag warping effect, including positive and negative. Some researchers have investigated the positive shear lag of composite decks by means of one-dimensional line model, while the studies on the negative shear lag have not yet been reported until now. In this study, a new one-dimensional analytical model of composite twin-girder decks is first proposed based on the model proposed by Dezi et al. Besides slab shear lag effect and partial connection at slab-girder interface which have been included in the model of Dezi et al., the particularity of the proposed model relies on its ability to account for variation characteristic of cross-section. Verification of the analytical model is later conducted through comparison of results from the analytical analysis and elaborate FE analysis for a simply supported composite deck with increasing depth and a two-span continuous one with decreasing depth. Finally, three kinds of structural forms of composite twin-girder decks, including cantilever, simply supported and continuous decks, are selected to carry out the analysis of positive and negative shear lag behaviors by means of the analytical model. The influences of cross-sectional variation characteristic and load type on positive and negative shear lag behaviors are mainly investigated. Additionally, a new definition on effective width for considering simultaneously positive and negative shear lag behaviors is proposed. The results from the proposed analytical model and EC4 specification are compared to provide suggestions for designers and checkers. In this study, the proposed analytical model can provide a powerful numerical tool for researchers to conduct the further investigation, and the analysis on shear lag and effective width can assist in design analysis of composite twin-girder decks.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.