Based on the unit quaternion decomposition of rotation matrix, this paper puts forward an algorithm to estimate motion parameters from the space position vectors of 3D feature points. Rotation matrix’s representation...Based on the unit quaternion decomposition of rotation matrix, this paper puts forward an algorithm to estimate motion parameters from the space position vectors of 3D feature points. Rotation matrix’s representation with the unit quaternion has no singular points, so the unit quaternion-based estimation method is of more practical importance, and the algorithm in this paper does not need iteration computation compared to those unit quaternion-based methods proposed by Horn(1987) and Su, et al.(1989). Solution’s uniqueness analysis of the algorithm and simulation experiment results are also presented, it can be seen that performance of our method is satisfactory.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related gen...Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.展开更多
基金"863"High Technology Research and Development Program of China under Grant 863-306-03-01
文摘Based on the unit quaternion decomposition of rotation matrix, this paper puts forward an algorithm to estimate motion parameters from the space position vectors of 3D feature points. Rotation matrix’s representation with the unit quaternion has no singular points, so the unit quaternion-based estimation method is of more practical importance, and the algorithm in this paper does not need iteration computation compared to those unit quaternion-based methods proposed by Horn(1987) and Su, et al.(1989). Solution’s uniqueness analysis of the algorithm and simulation experiment results are also presented, it can be seen that performance of our method is satisfactory.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
文摘Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.