期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Sea-Land Segmentation of Remote Sensing Images Based on SDW-UNet
1
作者 Tianyu Liu Pengyu Liu +3 位作者 Xiaowei Jia Shanji Chen Ying Ma Qian Gao 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1033-1045,共13页
Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.... Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.To mitigate large number of parameters and improve the segmentation accuracy,we propose a new Squeeze-Depth-Wise UNet(SDW-UNet)deep learning model for sea-land remote sensing image segmentation.The proposed SDW-UNet model leverages the squeeze-excitation and depth-wise separable convolution to construct new convolution modules,which enhance the model capacity in combining multiple channels and reduces the model parameters.We further explore the effect of position-encoded information in NLP(Natural Language Processing)domain on sea-land segmentation task.We have conducted extensive experiments to compare the proposed network with the mainstream segmentation network in terms of accuracy,the number of parameters and the time cost for prediction.The test results on remote sensing data sets of Guam,Okinawa,Taiwan China,San Diego,and Diego Garcia demonstrate the effectiveness of SDW-UNet in recognizing different types of sea-land areas with a smaller number of parameters,reduces prediction time cost and improves performance over other mainstream segmentation models.We also show that the position encoding can further improve the accuracy of model segmentation. 展开更多
关键词 Sea-land segmentation UNet depth-wise separable convolution squeeze-excitation position encoding
下载PDF
PCATNet: Position-Class Awareness Transformer for Image Captioning
2
作者 Ziwei Tang Yaohua Yi +1 位作者 Changhui Yu Aiguo Yin 《Computers, Materials & Continua》 SCIE EI 2023年第6期6007-6022,共16页
Existing image captioning models usually build the relation between visual information and words to generate captions,which lack spatial infor-mation and object classes.To address the issue,we propose a novel Position... Existing image captioning models usually build the relation between visual information and words to generate captions,which lack spatial infor-mation and object classes.To address the issue,we propose a novel Position-Class Awareness Transformer(PCAT)network which can serve as a bridge between the visual features and captions by embedding spatial information and awareness of object classes.In our proposal,we construct our PCAT network by proposing a novel Grid Mapping Position Encoding(GMPE)method and refining the encoder-decoder framework.First,GMPE includes mapping the regions of objects to grids,calculating the relative distance among objects and quantization.Meanwhile,we also improve the Self-attention to adapt the GMPE.Then,we propose a Classes Semantic Quantization strategy to extract semantic information from the object classes,which is employed to facilitate embedding features and refining the encoder-decoder framework.To capture the interaction between multi-modal features,we propose Object Classes Awareness(OCA)to refine the encoder and decoder,namely OCAE and OCAD,respectively.Finally,we apply GMPE,OCAE and OCAD to form various combinations and to complete the entire PCAT.We utilize the MSCOCO dataset to evaluate the performance of our method.The results demonstrate that PCAT outperforms the other competitive methods. 展开更多
关键词 Image captioning relative position encoding object classes awareness
下载PDF
Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction 被引量:3
3
作者 Ruibing Jin Min Wu +3 位作者 Keyu Wu Kaizhou Gao Zhenghua Chen Xiaoli Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1427-1439,共13页
Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recentl... Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recently,many deep learning based methods have been proposed to predict RUL.Among these methods,recurrent neural network(RNN)based approaches show a strong capability of capturing sequential information.This allows RNN based methods to perform better than convolutional neural network(CNN)based approaches on the RUL prediction task.In this paper,we question this common paradigm and argue that existing CNN based approaches are not designed according to the classic principles of CNN,which reduces their performances.Additionally,the capacity of capturing sequential information is highly affected by the receptive field of CNN,which is neglected by existing CNN based methods.To solve these problems,we propose a series of new CNNs,which show competitive results to RNN based methods.Compared with RNN,CNN processes the input signals in parallel so that the temporal sequence is not easily determined.To alleviate this issue,a position encoding scheme is developed to enhance the sequential information encoded by a CNN.Hence,our proposed position encoding based CNN called PE-Net is further improved and even performs better than RNN based methods.Extensive experiments are conducted on the C-MAPSS dataset,where our PE-Net shows state-of-the-art performance. 展开更多
关键词 Convolutional neural network(CNN) deep learning position encoding remaining useful life prediction
下载PDF
Bidirectional Transformer with absolute-position aware relative position encoding for encoding sentences 被引量:1
4
作者 Le QI Yu ZHANG Ting LIU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第1期63-71,共9页
Transformers have been widely studied in many natural language processing (NLP) tasks, which can capture the dependency from the whole sentence with a high parallelizability thanks to the multi-head attention and the ... Transformers have been widely studied in many natural language processing (NLP) tasks, which can capture the dependency from the whole sentence with a high parallelizability thanks to the multi-head attention and the position-wise feed-forward network. However, the above two components of transformers are position-independent, which causes transformers to be weak in modeling sentence structures. Existing studies commonly utilized positional encoding or mask strategies for capturing the structural information of sentences. In this paper, we aim at strengthening the ability of transformers on modeling the linear structure of sentences from three aspects, containing the absolute position of tokens, the relative distance, and the direction between tokens. We propose a novel bidirectional Transformer with absolute-position aware relative position encoding (BiAR-Transformer) that combines the positional encoding and the mask strategy together. We model the relative distance between tokens along with the absolute position of tokens by a novel absolute-position aware relative position encoding. Meanwhile, we apply a bidirectional mask strategy for modeling the direction between tokens. Experimental results on the natural language inference, paraphrase identification, sentiment classification and machine translation tasks show that BiAR-Transformer achieves superior performance than other strong baselines. 展开更多
关键词 TRANSFORMER relative position encoding bidirectional mask strategy sentence encoder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部