In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost period...In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost periodic solution for the above system are obtained, by using the theories of stability, the sufficient conditions which guarantee the stability of the positive almost periodic solution are derived.展开更多
In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a...In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.展开更多
基金Supported by the NNSF of China(11171135)Supported by the Jiangsu Province Innovation Project of Graduate Education(1221190037)
文摘In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost periodic solution for the above system are obtained, by using the theories of stability, the sufficient conditions which guarantee the stability of the positive almost periodic solution are derived.
基金the National Natural Sciences Foundation of People's Republic of China under Grants Nos.11861072 and 11361072the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant No.2019FBO03.
文摘In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.