A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the...A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.展开更多
To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There a...To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There are different approaches to find such metric operators. We compare the different approaches of calculating positive definite metric operators in pseudo-Hermitian theories with the help of several explicit examples in non-relativistic as well as in relativistic situations. Exceptional points and spontaneous symmetry breaking are also discussed in these models.展开更多
A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we cons...A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we consider the solution of saddle point systems by preconditioned Krylov subspaee method and discuss some spectral properties of the preconditioned saddle point matrices. Numerical experiments are given to validate the performances of the preconditioners.展开更多
基金Research supported by The China NNSF 0utstanding Young Scientist Foundation (No.10525102), The National Natural Science Foundation (No.10471146), and The National Basic Research Program (No.2005CB321702), P.R. China.
文摘A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.
文摘To develop a unitary quantum theory with probabilistic description for pseudo-Hermitian systems one needs to consider the theories in a different Hilbert space endowed with a positive definite metric operator. There are different approaches to find such metric operators. We compare the different approaches of calculating positive definite metric operators in pseudo-Hermitian theories with the help of several explicit examples in non-relativistic as well as in relativistic situations. Exceptional points and spontaneous symmetry breaking are also discussed in these models.
文摘A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we consider the solution of saddle point systems by preconditioned Krylov subspaee method and discuss some spectral properties of the preconditioned saddle point matrices. Numerical experiments are given to validate the performances of the preconditioners.