In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more pr...In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more precise as compared to some recent published results.Moreover,we shall present refinements of the Lin conjecture.展开更多
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤...Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map.展开更多
文摘In this research article,we shall give some reverse Arithmetic-Geometric mean inequalities for unital positive linear maps on Hilbert space operators under some different conditions.Our results are sharper and more precise as compared to some recent published results.Moreover,we shall present refinements of the Lin conjecture.
文摘Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map.