By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
The existence of positive solutions to second-order periodic BVPs-u'+Mu =j(t, u),t(0) = u(2π),u'(0) = '(2π) and u'+ Mu = I(t, u), u(0) = u(2π), u'(0) = u'(2π)is proved by a simple appliCati...The existence of positive solutions to second-order periodic BVPs-u'+Mu =j(t, u),t(0) = u(2π),u'(0) = '(2π) and u'+ Mu = I(t, u), u(0) = u(2π), u'(0) = u'(2π)is proved by a simple appliCation of a Fixed point Theorem in cones due to Krasnoselskii.展开更多
In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which ...In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which r,a 2,K and τ are positive constants, and a 1(t ),α(t),b(t) and β(t) are positive continuous functions of period ω .展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we...In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we obtain the conditions for the existence of periodic solution of this system.展开更多
In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost period...In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost periodic solution for the above system are obtained, by using the theories of stability, the sufficient conditions which guarantee the stability of the positive almost periodic solution are derived.展开更多
This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of...This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.展开更多
Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is estab...Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.展开更多
By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f...By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.展开更多
In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Legg...In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.展开更多
In this paper,we consider the Kolmogorov type n-species competition systems with forced terms.We prove that this system is permanent in the case of which there are positive forced terms in this system;and if there a...In this paper,we consider the Kolmogorov type n-species competition systems with forced terms.We prove that this system is permanent in the case of which there are positive forced terms in this system;and if there are several negative forced terms in this system,it has at least two positive periodic solutions.展开更多
The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-...The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-periodic solutions under certain growth conditions imposed on f.Applications will be presented to illustrate the main results.展开更多
By using a new method, a set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for three\|species Lotka\|Volterra mixed systems with periodic stocking:x 1′(t)=x ...By using a new method, a set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for three\|species Lotka\|Volterra mixed systems with periodic stocking:x 1′(t)=x 1(t)(b 1(t)-a 11 (t)x 1(t)-a 12 (t)x 2(t)-a 13 (t)x 3(t))+S 1(t) x 2′(t)=x 2(t)(-b 2(t)+a 21 (t)x 1(t)-a 22 (t)x 2(t)-a 23 (t)x 3(t))+S 2(t) x 3′(t)=x 3(t)(-b 3(t)+a 31 (t)x 1(t)-a 32 (t)x 2(t)-a 33 (t)x 3(t))+S 3(t)where b i(t),a ij (t)(i,j=1,2,3) are positive continuous T \|periodic functions, S i(t)(i=1,2,3) are nonnegative continuous T \|periodic functions.展开更多
Existence and nonexistence criteria are established for the positive periodic solutions of two species population growth with periodic delay by applying continuation theorem of coincidence degree theory.
A nonautonomous predator-prey difference model with Beddington-DeAngelis functional response, diffusion, and time delays is investigated. The model consists of n competing preys and one predator, and the predator and ...A nonautonomous predator-prey difference model with Beddington-DeAngelis functional response, diffusion, and time delays is investigated. The model consists of n competing preys and one predator, and the predator and one prey are confined to one patch. First, eon^pts and results concerning the continuation theorem of coincidence degree are summarized. Then, a system of algebraic equations is proved to have a unique solution. Finally, the sufficient conditions for the existence of a difference system are established. The result is substantiated through numerical simulation.展开更多
In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the f...In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.展开更多
In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple...In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple positive periodic solutions for a kind of delay Logistic equations. Some biomathematical models are presented to illustrate our results.展开更多
In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of po...In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illustrate the feasibility of our main results.展开更多
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
文摘The existence of positive solutions to second-order periodic BVPs-u'+Mu =j(t, u),t(0) = u(2π),u'(0) = '(2π) and u'+ Mu = I(t, u), u(0) = u(2π), u'(0) = u'(2π)is proved by a simple appliCation of a Fixed point Theorem in cones due to Krasnoselskii.
文摘In this paper, the existence o f a positive periodic solution to the following neutral predator_prey system (t)=rH(t)1-a 1(t)H(t-τ)+a 2(t-τ)K-α(t)H(t)P(t), (t)=-b(t)P(t)+β(t)H(t)P(t) is studied,in which r,a 2,K and τ are positive constants, and a 1(t ),α(t),b(t) and β(t) are positive continuous functions of period ω .
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘In this paper, a nonautonomous periodic model of population with time delays and impulses, which arises in order to describe the control of a single population of cells, is studied. By the coincidence degree theory we obtain the conditions for the existence of periodic solution of this system.
基金Supported by the NNSF of China(11171135)Supported by the Jiangsu Province Innovation Project of Graduate Education(1221190037)
文摘In this paper, we study the following nonlinear biological modeldx(t)/dt = x(t)[a(t)-b(t)x α (t)] + f(t, xt),by using fixed pointed theorem, the sufficient conditions of the existence of unique positive almost periodic solution for the above system are obtained, by using the theories of stability, the sufficient conditions which guarantee the stability of the positive almost periodic solution are derived.
基金Supported by the Natural Science Foundation of Hunan Province(12JJ6006) Supported by the Science Foundation of Department of Science and Technology of Hunan Province(2012FJ3107)
文摘This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.
文摘Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.
基金Supported by the National Natural Sciences Foundation of China(10361006)Supported by the Natural Sciences Foundation of Yunnan Province(2003A0001M)Supported by the Jiangsu "Qing-lanProject" for Excellent Young Teachers in University(2006)
文摘By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.
文摘In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.
文摘In this paper,we consider the Kolmogorov type n-species competition systems with forced terms.We prove that this system is permanent in the case of which there are positive forced terms in this system;and if there are several negative forced terms in this system,it has at least two positive periodic solutions.
基金The first author was supported by the Science Foundation of Educational Committee of HunanProvince ( 99C0 1 ) and the second author by the National Natural Science Foundation of China ( 1 9871 0 0 5 )
文摘The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-periodic solutions under certain growth conditions imposed on f.Applications will be presented to illustrate the main results.
文摘By using a new method, a set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions for three\|species Lotka\|Volterra mixed systems with periodic stocking:x 1′(t)=x 1(t)(b 1(t)-a 11 (t)x 1(t)-a 12 (t)x 2(t)-a 13 (t)x 3(t))+S 1(t) x 2′(t)=x 2(t)(-b 2(t)+a 21 (t)x 1(t)-a 22 (t)x 2(t)-a 23 (t)x 3(t))+S 2(t) x 3′(t)=x 3(t)(-b 3(t)+a 31 (t)x 1(t)-a 32 (t)x 2(t)-a 33 (t)x 3(t))+S 3(t)where b i(t),a ij (t)(i,j=1,2,3) are positive continuous T \|periodic functions, S i(t)(i=1,2,3) are nonnegative continuous T \|periodic functions.
文摘Existence and nonexistence criteria are established for the positive periodic solutions of two species population growth with periodic delay by applying continuation theorem of coincidence degree theory.
基金The National Natural Science Foundation of China (Nos.60671063,10571113,and 10871122)
文摘A nonautonomous predator-prey difference model with Beddington-DeAngelis functional response, diffusion, and time delays is investigated. The model consists of n competing preys and one predator, and the predator and one prey are confined to one patch. First, eon^pts and results concerning the continuation theorem of coincidence degree are summarized. Then, a system of algebraic equations is proved to have a unique solution. Finally, the sufficient conditions for the existence of a difference system are established. The result is substantiated through numerical simulation.
基金Project(10471153) supported by the National Natural Science Foundation of China project supported by the Natural Science Foundation of Central South University
文摘In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.
文摘In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple positive periodic solutions for a kind of delay Logistic equations. Some biomathematical models are presented to illustrate our results.
文摘In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illustrate the feasibility of our main results.