BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal...BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.展开更多
Objective:This study aims to evaluate the clinical efficacy of non-invasive positive pressure ventilation(NIPPV)in patients with severe bronchial asthma combined with respiratory failure.Methods:90 patients with sever...Objective:This study aims to evaluate the clinical efficacy of non-invasive positive pressure ventilation(NIPPV)in patients with severe bronchial asthma combined with respiratory failure.Methods:90 patients with severe bronchial asthma combined with respiratory failure between September 2022 and December 2023 were selected for the study and randomly divided into the experimental group(NIPPV-assisted treatment)and the control group.The differences between the two groups were compared in terms of total effective rate of treatment,days of clinical symptom disappearance,days of hospitalization,lung function indexes,incidence of adverse reactions,and quality of life.Results:Patients in the experimental group had a significantly higher total effective rate of treatment(97.78%)than the control group(75.56%).In terms of pulmonary function indexes,patients in the experimental group showed significant improvement after treatment,especially the increase in forced expiratory volume and forced vital capacity,while these improvements were not as obvious in the control group.In addition,the incidence of adverse reactions was significantly lower in the experimental group than in the control group,suggesting that the application of NIPPV is relatively safe.Quality of life assessment also showed that patients in the experimental group had significantly better quality of life than the control group after treatment.Conclusion:This study demonstrated the effectiveness of NIPPV as an adjunctive treatment for severe bronchial asthma combined with respiratory failure.NIPPV can improve lung function,reduce the incidence of adverse effects,increase the overall effectiveness of the treatment,and contribute to the improvement of patients'quality of life.Therefore,NIPPV should be regarded as an effective and safe treatment in clinical management,especially in patients with severe bronchial asthma combined with respiratory failure,where its application has potential clinical significance.展开更多
Objective:T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD) and...Objective:T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD) and type II respiratory failure. Methods:90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45). Control group received conventional therapy, observation group received conventional therapy+adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results:Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-a)O2] levels of observation group were higher than those of control group while, potassium ion (K+), chloride ion (Cl-) and carbon dioxide combining power (CO2CP) levels were lower than those of control group 2 weeks after treatment;echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS) and pulmonary arterial velocity (PAV) levels were lower than those of control group (P<0.05) while pulmonary artery accelerating time (PAACT), left ventricular end-diastolic dimension (LVDd) and right atrioventricular tricuspid annular plane systolic excursion (TAPSE) levels were higher than those of control group (P<0.05);serum cardiac function indexes adiponectin (APN), Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP), cystatin C (CysC), growth differentiation factor-15 (GDF-15) and heart type fatty acid binding protein (H-FABP) content were lower than those of control group (P<0.05);serum inflammatory factors hypersensitive C-reactive protein (hs-CRP), tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), IL-8, IL-10, and transforming growth factor-β1 (TGF-β1) content were lower than those of control group (P<0.05). Conclusions:Adjuvant noninvasive positive pressure ventilation can optimize the blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure, and it is of positive significance in improving the overall treatment outcome.展开更多
Aim: The purpose of this case study was to examine the sleep quality of patients receiving noninvasive positive pressure ventilation (NPPV) or nasal high-flow oxygen therapy (NHF) in an intensive care unit and to inve...Aim: The purpose of this case study was to examine the sleep quality of patients receiving noninvasive positive pressure ventilation (NPPV) or nasal high-flow oxygen therapy (NHF) in an intensive care unit and to investigate what types of nursing support are offered to such patients. Methods: We examined one patient each for NPPV and NHF. Polysomnography (PSG), review of the patient charts, and semi-structured interviews were used to collect the data for analysis. Results: Patients treated with NPPV or NHF demonstrated a noticeable reduction in deep sleep, with most of their sleep being shallow. Their sleep patterns varied greatly from those of healthy individuals. These results suggest that, in addition to experiencing extremely fragmented sleep, sleep in these patients was more likely to be interrupted by nursing interventions, such as during auscultation of breath sounds. Furthermore, it was revealed that “anxiety or discomfort that accompanies the mask or air pressure” in patients treated with NPPV and “discomfort that accompanies the nasal cannula or NHF circuit” in patients treated with NHF may be primary causes of disrupted sleep. Our results suggest a need for nursing care aimed at improving sleep quality in patients treated with NPPV or NHF.展开更多
Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and ty...Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and type II respiratory failure admitted to our hospital from January 2017 to January 2019 were randomly divided into observation group and control group,with 29 cases in each group.Among them,the control group was received routine treatment while the observation group was treated with bi-level positive pressure airway ventilation in addition of conventional treatment.The arterial blood gas analysis,mortality rate and hospitalization time of these two groups before and after treatment were compared.Result:The blood pH,partial pressure of oxygen(PaO2)and arterial oxygen saturation(SaO2)of these two groups were significantly higher after the treatment while PaO2 alone was decreased.The difference was statistically significant(P<0.05).The results of arterial blood gas analysis in the observation group were significantly improved compared with those before treatment.The mortality rate and hospitalization time were significantly less than the control group,and the difference was statistically significant(P<0.05).Conclusion:Early clinical application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure has a significant clinical effect in reducing the mortality rate and hospitalization time of patients,and thus it is worthy of clinical application.展开更多
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev...Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.展开更多
Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used ...Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used NIV interfaces in the treatments of ARF. Methods: The searches were conducted in the Medline, Lilacs, PubMed, Cochrane, and Pedro databases from June to November 2021. The inclusion criteria were Randomized clinical trials (RCTs) published from 2016 to 2021 in Portuguese, Spanish, or English and involving adults (aged ≥ 18 years). The eligibility criteria for article selection were based on the PICO strategy: Population—Adults with ARF;Intervention—NIV Therapy;Comparison—Conventional oxygen therapy, high-flow nasal cannula (HFNC) oxygen therapy, or NIV;Outcome—improvement in ARF. The search for articles and the implementation of the inclusion criteria were independently conducted by two researchers. Results: Seven scientific articles involving 574 adults with ARF due to various causes, such as chest trauma, decompensated heart failure, coronavirus disease 2019 (COVID-19), and postoperative period, among others, were included. The interfaces cited in the studies included an oronasal mask, nasal mask, full-face mask, and helmet. In addition, some favorable outcomes related to NIV were reported in the studies, such as a reduction in the rate of orotracheal intubation and shorter length of stay in the ICU. Conclusions: The most cited interfaces in the treatment of ARF were the oronasal mask and the helmet.展开更多
<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failur...<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failure is an uncommon complication of pregnancy. However, it is the most frequent organ dysfunction associated with obstetric admissions to an intensive care unit. The obstetric population is a different group due to its physiology and the presence of the fetus that lacks evidence in the literature within the subject of ventilatory support. Noninvasive positive pressure ventilation (NIPPV) is often avoided due to the lack of knowledge on the safety and efficacy of this modality. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Currently,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> there are no guidelines for the management of respiratory failure in pregnancy. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">To provide evidence in support of the use of NIPPV as a safe and reasonable modality for pregnant patients with respiratory failure. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">We retrospectively reviewed medical records of 29 pregnant patients of the Obstetric Critical Care Unit of a tertiary hospital in Panamá City who received NIPPV from 2013 to 2015. Failure to response was defined as the lack of increase in the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio or clinical deterioration 6 hours after initiating NIPPV. Demographics, indication for NIPPV, duration of treatment, as well as maternal and fetal outcomes were collected. </span><b><span style="font-family:Verdana;">Measurements</span></b> <b><span style="font-family:Verdana;">and</span></b> <b><span style="font-family:Verdana;">Main</span></b> <b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Mean age was 28.4 ± 6 years, mean body mass index 27.4 ± 3.3, and mean gestational age at admission was 30</span><sup><span style="font-family:Verdana;">5/7</span></sup><span style="font-family:Verdana;"> ± 5 weeks. Twenty-four patients (82.8%) met the criteria for acute lung injury (ALI) and an additional two (6.9%) for acute respiratory distress syndrome (ARDS). The mean duration of ventilation was 50.6 ± 17.27 hours. Statistically significant differences were noted between the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratios in failure and successful patients within 2 hours of NIPPV therapy (P = 0.007) and </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio within 6 hours of NIPPV therapy (P = 0.03). Success was defined when the patient was administered NIPPV, resulting in an improvement (increase in </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">p</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">a/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio) of her ventilatory parameters. Three patients (10.3%) failed to respond to NIPPV and needed to be converted to invasive mechanical ventilation. Patients who required intubation had a longer duration of ICU stay (P = 0.006) and overall hospital stay (P = 0.03). None of patients presented aspiration during NIPPV therapy. </span><b><span style="font-family:Verdana;">Conclusion: </span></b><span style="font-family:Verdana;">The current series is the largest report of pregnant patients requiring ventilatory support who received NIPPV as first line of therapy. This report shows the usefulness of this ventilation modality, avoiding intubation with its risks, of a significant number of patients, especially ventilator-associated pneumonia.</span></span></span></span>展开更多
Objective:To evaluate the efficacy and safety of protective lung ventilation strategy combined with lung recruitment maneuver (RM) in the treatment patients with acute respiratory distress syndrome (ARDS).Methods:Tota...Objective:To evaluate the efficacy and safety of protective lung ventilation strategy combined with lung recruitment maneuver (RM) in the treatment patients with acute respiratory distress syndrome (ARDS).Methods:Totally 74 patients with ARDS admitted to the Department of Intensive Care Unit, Changshu Second People's Hospital in Jiangsu Province between September 2010 and June 2013 were selected and randomly divided into lung recruitment group and non-lung recruitment group, and the initial ventilation solution for both groups was synchronized intermittent mandatory ventilation (SIMV). For RM, SIMV mode (pressure control and pressure support) was adopted. Positive end expiratory pressure (PEEP) was increased by 5 cm H2O every time and maintained for 40-50 s before entering the next increasing period, and the peak airway pressure was kept below 45 cm H2O. After PEEP reached the maximum value, it was gradually reduced by 5 cm H2O every time and finally maintained at 15 cm H2O for 10 min.Results:A total of 74 patients with mean age of (49.0±18.6) years old were enrolled, 36 patients were enrolled in lung recruitment maneuver (RM) group and 38 patients were enrolled into non-lung recruitment maneuver (non-RM) group. 44 were male and accounted for 59.5% of all the patients. For the indicators such as PEEP, pressure support (PS), plateau airway pressure (Pplat), peak airway pressure (Ppeak), vital capacity (VC) and fraction of inspired oxygen (FiO2), no statistical differences in the indicators were found between the RM group and non-RM group on D1, D3 and D7 (P>0.05), except that only FiO2 of RM group on D7 was significantly lower than that of non-RM group (47.2±10.0) vs. (52.2±10.5),P<0.05]. For the indicators of blood gas analysis, including pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2) and oxygenation index (PaO2/FiO2), PaO2 and PaO2/FiO2 of RM group were significantly higher than those of non-RM group on D7, and the values were [(90.2±16.1) mmHg vs. (76.4±11.3) mmHg,P<0.05] and [(196.5±40.7) mmHg vs. (151.7±37.3) mmHg,P<0.05] respectively. There was no statistical difference in heart rate (HR), cardiac index (CI), central venous pressure (CVP) or mean arterial pressure (MAP) between RM group and non-RM group on D1, D3 and D7 (P>0.05). 28-day mortality, ICU mortality and in-hospital mortality were 25% vs. 28.9%, 25% vs. 26.3% and 36.1% vs. 39.5% respectively between RM group and non-RM group (allP>0.05).Conclusion:Protective lung ventilation strategy combined with lung recruitment maneuver can improve the indicators such as PaO2, FiO2 and PaO2/FiO2 on D7, but failed to improve the final outcomes such as 28-day mortality, ICU mortality and in-hospital mortality.展开更多
AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric i...AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric intensive care unit(PICU) or inpatient general pediatrics between January 2013 and December 2015 at two academic centers.Patients who utilized NIMV with other modes of noninvasive ventilation during the same admission were included.Data included demographics,vital signs on admission and prior to initiation of NIMV,pediatric risk of mortality Ⅲ(PRIsM-Ⅲ) scores,complications,respiratory support characteristics,PICU and hospital length of stays,duration of respiratory support,and complications.Patients who did not require escalation to mechanical ventilation were defined as NIMV responders;those who required escalation to mechanical ventilation(MV) were defined as NIMV nonresponders.NIMV responders were compared to NIMV non-responders.RESULTS Forty-two patients met study criteria.six(14%) failed treatment and required MV.The majority of the patients(74%) had a primary diagnosis of bronchiolitis.The median age of these 42 patients was 4 mo(range 0.5-28.1 mo,IQR 7,P = 0.69).No significant difference was measured in other baseline demographics and vitals on initiation of NIMV;these included age,temperature,respiratory rate,O2 saturation,heart rate,systolic blood pressure,diastolic blood pressure,and PRIsM-Ⅲ scores.The duration of NIMV was shorter in the NIMV nonresponder vs NIMV responder group(6.5 h vs 65 h,P < 0.0005).Otherwise,NIMV failure was not associated with significant differences in PICU length of stay(LOs),hospital LOs,or total duration of respiratory support.No patients had aspiration pneumonia,pneumothorax,or skin breakdown.CONCLUSION Most of our patients responded to NIMV.NIMV failure is not associated with differences in hospital LOs,PICU LOs,or duration of respiratory support.展开更多
<b>Objective:</b> The purpose of this study was to investigate the effect of right supine endotracheal intubation on respiratory complications and airway pressure of general anesthesia, and to provide guid...<b>Objective:</b> The purpose of this study was to investigate the effect of right supine endotracheal intubation on respiratory complications and airway pressure of general anesthesia, and to provide guidance for clinical application. <b>Methods:</b> Seventy-two children who received oral treatment under general anesthesia from November 2020 to November 2021 in Yantai Stomatological Hospital were randomly divided into three groups, 24 cases in each group. All three groups of children entered the PACU after the surgery. The children in Group I were extubated in the supine position, the children in Group II were immediately changed to the right decubitus after extubation in the horizontal position, and the children in Group III were extubated in the right decubitus. HR, MAP and SpO<sub>2</sub> of T1 (the time point at the beginning of surgery), T2 (the time point at 1 hour after surgery), T3 (the time point after extubation), T4 (the time point at 1 minute after extubation), T5 (the time point at 3 minutes after extubation) in the three groups were observed, t1 (operation time) and t2 (the time of leaving the PACU) were recorded. The airway pressure (P1) in the recumbent position and the airway pressure (P2) in the right decubitus position before extubation were recorded in Group III. The number of sputum suction and complications after extubation were counted. <b>Results:</b> The t2 in Group III was shorter than that in Groups I and II, and the number of sputum suction in Group III was less than that in Groups I and II (P < 0.05). The HR at T3, T4 and T5 in Group III was lower than that in Group I, and the HR at T4 and T5 was lower than that in Group II (P < 0.05). There were significant differences in the incidence of respiratory complications among the three groups (P < 0.05). The incidence of asphyxia, bucking and glossocoma postoperative agitation in Group III was significantly lower than that in Group I, and the incidence of asphyxia and choking was lower than that in Group II (P < 0.05). The incidence of glossoptosis in Group II was significantly lower than that in Group I (P < 0.05). In Group III, the airway pressure P2 in the right decubitus position during endotracheal intubation was higher than that of P1 in the supine position during endotracheal intubation (P < 0.05). The 95% Confidence Interval (CI) of airway pressure difference was 1.416 - 1.834 cmH<sub>2</sub>O. <b>Conclusion:</b> For children undergoing intraoral therapy under general anesthesia, tracheal extubation in the right decubitus position can improve the circulation fluctuation before and after extubation, reducing the number of sputum suction and respiratory tract-related complications, and can shorten the departure time. The body position change during the tracheal intubation will slightly increase the airway pressure, but the supine position after extubation can better ensure the smooth spontaneous breathing of children, which can provide the reference for clinical application.展开更多
The novel coronavirus,which was declared a pandemic by the World Health Organization in early 2020 has brought with itself major morbidity and mortality.It has increased hospital occupancy,heralded economic turmoil,an...The novel coronavirus,which was declared a pandemic by the World Health Organization in early 2020 has brought with itself major morbidity and mortality.It has increased hospital occupancy,heralded economic turmoil,and the rapid transmission and community spread have added to the burden of the virus.Most of the patients are admitted to the intensive care unit(ICU)for acute hypoxic respiratory failure often secondary to acute respiratory distress syndrome(ARDS).Based on the limited data available,there have been different opinions about the respiratory mechanics of the ARDS caused by coronavirus disease 2019(COVID-19).Our article provides an insight into COVID-19 pathophysiology and how it differs from typical ARDS.Based on these differences,our article explains the different approach to ventilation in COVID-19 ARDS compared to typical ARDS.We critically analyze the role of positive end-expiratory pressure(PEEP)and proning in the ICU patients.Through the limited data and clinical experience are available,we believe that early proning in COVID-19 patients improves oxygenation and optimal PEEP should be titrated based on individual lung compliance.展开更多
Objective:To explore the respiratory medicine treatment methods for treating chronic obstructive pulmonary disease(COPD)combined with respiratory failure.Methods:70 cases of COPD patients with combined respiratory fai...Objective:To explore the respiratory medicine treatment methods for treating chronic obstructive pulmonary disease(COPD)combined with respiratory failure.Methods:70 cases of COPD patients with combined respiratory failure admitted to our hospital from January 2021 to January 2023 were selected as the study subjects,and randomly divided into the control group and the experimental group,each with 35 cases.The control group received only conventional treatment,and the experimental group received non-invasive positive pressure ventilation,and the treatment effects and changes in the levels of IL-18,hs-CRP,and CES2 inflammatory factors were observed and evaluated in the two groups.Results:There was no significant difference between the general data of the two groups(P>0.05);after treatment,the total effective rate of clinical efficacy of the observation group(91.43%)was significantly higher than that of the control group(71.43%),and the difference showed a significant correlation(P<0.05);after treatment,the level of inflammatory factor of the observation group was significantly reduced compared with that of the control group,and the difference showed a highly significant correlation(P<0.001).Conclusion:The non-invasive positive pressure ventilation treatment program significantly improves the therapeutic effect,effectively controls the level of inflammatory factors,and improves the health status of patients when dealing with patients with chronic obstructive pulmonary disease accompanied by respiratory failure,showing a good clinical application prospect.展开更多
Background Although noninvasive positive pressure ventilation (NPPV) has been successfully used for various kinds of acute respiratory failure,the data are limited regarding its application in postoperative respirat...Background Although noninvasive positive pressure ventilation (NPPV) has been successfully used for various kinds of acute respiratory failure,the data are limited regarding its application in postoperative respiratory failure after cardiac surgery.Therefore,we conducted a prospective randomized control study in a university surgical intensive care unit to evaluate the efficacy and safety of NPPV in the treatment of acute respiratory failure after cardiac surgery,and explore the predicting factors of NPPV failure.Methods From September 2011 to November 2012 patients with acute respiratory failure after cardiac surgery who had indication for the use of NPPV were randomly divided into a NPPV treatment group (NPPV group) and the conventional treatment group (control group).The between-group differences in the patients' baseline characteristics,re-intubation rate,tracheotomy rate,ventilator associated pneumonia (VAP) incidence,in-hospital mortality,mechanical ventilation time after enrollment (MV time),intensive care unit (ICU) and postoperative hospital stays were compared.The factors that predict NPPV failure were analyzed.Results During the study period,a total of 139 patients who had acute respiratory failure after cardiac surgery were recorded,and 95 of them met the inclusion criteria,which included 59 males and 36 females with a mean age of (61.5±11.2) years.Forty-three patients underwent coronary artery bypass grafting (CABG),23 underwent valve surgery,13 underwent CABG+valve surgery,13 underwent major vascular surgery,and three underwent other surgeries.The NPPV group had 48 patients and the control group had 47 patients.In the NPPV group,the re-intubation rate was 18.8%,tracheotomy rate was 12.5%,VAP incidence was 0,and the in-hospital mortality was 18.8%,significantly lower than in the control group 80.9%,29.8%,17.0% and 38.3% respectively,P <0.05 or P <0.01.The MV time and ICU stay (expressed as the median (P25,P75)) were 18.0 (9.2,35.0) hours and 4.0 (2.0,5.0) days,which were significantly shorter than in the control group,96.0 (26.0,240.0) hours and 6.0 (4.0,9.0) days respectively,P <0.05 or P <0.01.The postoperative hospital stays of the two groups were similar.The univariate analysis showed that the NPPV success subgroup had more patients with acute lung injury (ALl) (17 vs.0,P=0.038),fewer patients with pneumonia (2 vs.7,P <0.001) and lower acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) scores (16.1±2.8 vs.21.8±3.2,P <0.001).Multivariate analysis showed that pneumonia (P=-0.027) and a high APACHE Ⅱ score >20 (P=-0.002) were the independent risk factors of NPPV failure.Conclusions We conclude that NPPV can be applied in selected patients with acute respiratory failure after cardiac surgery to reduce the need of re-intubation and improve clinical outcome as compared with conventional treatment.Pneumonia and a high APACHE Ⅱ score >20 might be the independent risk factors of NPPV failure in this group of patients.展开更多
Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmit...Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients(BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilatorinduced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.展开更多
<strong>Background:</strong> Prone positioning is nowadays considered as one of the most effective strategies for patients with severe acute respiratory distress syndrome (ARDS). Prone position ventilation...<strong>Background:</strong> Prone positioning is nowadays considered as one of the most effective strategies for patients with severe acute respiratory distress syndrome (ARDS). Prone position ventilation can lead to some severe complications. Effectively implement prone ventilation and reduce the incidence of complications become an important problem for clinical medical staff. <strong>Aims: </strong>To investigate whether the Sandwich rolling over method was convenient for clinical implementation and can reduce complications. <strong>Design:</strong> This is a single-center, retrospective, observational study.<strong> Results:</strong> The mean pronation cycles per patient were 6.11 <span style="white-space:nowrap;">±</span> 4.40. The mean time spent in prone position for each cycle was 10.05 <span style="white-space:nowrap;">±</span> 4.42 hours. Two patients developed a pressure sore and the positions were cheek, auricle and chest. The mean time it took from preparation to cover the patient with the quilt was 10.56 <span style="white-space:nowrap;">±</span> 4.35 minutes. Conclusions: This retrospective study has shown that under the close cooperation and supervision of the team, the implementation efficiency of prone position ventilation can be improved and the occurrence of complications can be reduced.展开更多
文摘BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.
文摘Objective:This study aims to evaluate the clinical efficacy of non-invasive positive pressure ventilation(NIPPV)in patients with severe bronchial asthma combined with respiratory failure.Methods:90 patients with severe bronchial asthma combined with respiratory failure between September 2022 and December 2023 were selected for the study and randomly divided into the experimental group(NIPPV-assisted treatment)and the control group.The differences between the two groups were compared in terms of total effective rate of treatment,days of clinical symptom disappearance,days of hospitalization,lung function indexes,incidence of adverse reactions,and quality of life.Results:Patients in the experimental group had a significantly higher total effective rate of treatment(97.78%)than the control group(75.56%).In terms of pulmonary function indexes,patients in the experimental group showed significant improvement after treatment,especially the increase in forced expiratory volume and forced vital capacity,while these improvements were not as obvious in the control group.In addition,the incidence of adverse reactions was significantly lower in the experimental group than in the control group,suggesting that the application of NIPPV is relatively safe.Quality of life assessment also showed that patients in the experimental group had significantly better quality of life than the control group after treatment.Conclusion:This study demonstrated the effectiveness of NIPPV as an adjunctive treatment for severe bronchial asthma combined with respiratory failure.NIPPV can improve lung function,reduce the incidence of adverse effects,increase the overall effectiveness of the treatment,and contribute to the improvement of patients'quality of life.Therefore,NIPPV should be regarded as an effective and safe treatment in clinical management,especially in patients with severe bronchial asthma combined with respiratory failure,where its application has potential clinical significance.
文摘Objective:T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD) and type II respiratory failure. Methods:90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45). Control group received conventional therapy, observation group received conventional therapy+adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results:Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-a)O2] levels of observation group were higher than those of control group while, potassium ion (K+), chloride ion (Cl-) and carbon dioxide combining power (CO2CP) levels were lower than those of control group 2 weeks after treatment;echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS) and pulmonary arterial velocity (PAV) levels were lower than those of control group (P<0.05) while pulmonary artery accelerating time (PAACT), left ventricular end-diastolic dimension (LVDd) and right atrioventricular tricuspid annular plane systolic excursion (TAPSE) levels were higher than those of control group (P<0.05);serum cardiac function indexes adiponectin (APN), Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP), cystatin C (CysC), growth differentiation factor-15 (GDF-15) and heart type fatty acid binding protein (H-FABP) content were lower than those of control group (P<0.05);serum inflammatory factors hypersensitive C-reactive protein (hs-CRP), tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), IL-8, IL-10, and transforming growth factor-β1 (TGF-β1) content were lower than those of control group (P<0.05). Conclusions:Adjuvant noninvasive positive pressure ventilation can optimize the blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure, and it is of positive significance in improving the overall treatment outcome.
文摘Aim: The purpose of this case study was to examine the sleep quality of patients receiving noninvasive positive pressure ventilation (NPPV) or nasal high-flow oxygen therapy (NHF) in an intensive care unit and to investigate what types of nursing support are offered to such patients. Methods: We examined one patient each for NPPV and NHF. Polysomnography (PSG), review of the patient charts, and semi-structured interviews were used to collect the data for analysis. Results: Patients treated with NPPV or NHF demonstrated a noticeable reduction in deep sleep, with most of their sleep being shallow. Their sleep patterns varied greatly from those of healthy individuals. These results suggest that, in addition to experiencing extremely fragmented sleep, sleep in these patients was more likely to be interrupted by nursing interventions, such as during auscultation of breath sounds. Furthermore, it was revealed that “anxiety or discomfort that accompanies the mask or air pressure” in patients treated with NPPV and “discomfort that accompanies the nasal cannula or NHF circuit” in patients treated with NHF may be primary causes of disrupted sleep. Our results suggest a need for nursing care aimed at improving sleep quality in patients treated with NPPV or NHF.
文摘Objective:To analyze the clinical efficacy of early application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure.Method:A total of 58 patients with COPD and type II respiratory failure admitted to our hospital from January 2017 to January 2019 were randomly divided into observation group and control group,with 29 cases in each group.Among them,the control group was received routine treatment while the observation group was treated with bi-level positive pressure airway ventilation in addition of conventional treatment.The arterial blood gas analysis,mortality rate and hospitalization time of these two groups before and after treatment were compared.Result:The blood pH,partial pressure of oxygen(PaO2)and arterial oxygen saturation(SaO2)of these two groups were significantly higher after the treatment while PaO2 alone was decreased.The difference was statistically significant(P<0.05).The results of arterial blood gas analysis in the observation group were significantly improved compared with those before treatment.The mortality rate and hospitalization time were significantly less than the control group,and the difference was statistically significant(P<0.05).Conclusion:Early clinical application of bi-level positive airway pressure ventilation in the treatment of COPD with type II respiratory failure has a significant clinical effect in reducing the mortality rate and hospitalization time of patients,and thus it is worthy of clinical application.
文摘Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.
文摘Background: Noninvasive ventilation (NIV) is an important therapeutic modality for the treatment of acute respiratory failure (ARF). In this review, we critically analyze randomized controlled trials on the most used NIV interfaces in the treatments of ARF. Methods: The searches were conducted in the Medline, Lilacs, PubMed, Cochrane, and Pedro databases from June to November 2021. The inclusion criteria were Randomized clinical trials (RCTs) published from 2016 to 2021 in Portuguese, Spanish, or English and involving adults (aged ≥ 18 years). The eligibility criteria for article selection were based on the PICO strategy: Population—Adults with ARF;Intervention—NIV Therapy;Comparison—Conventional oxygen therapy, high-flow nasal cannula (HFNC) oxygen therapy, or NIV;Outcome—improvement in ARF. The search for articles and the implementation of the inclusion criteria were independently conducted by two researchers. Results: Seven scientific articles involving 574 adults with ARF due to various causes, such as chest trauma, decompensated heart failure, coronavirus disease 2019 (COVID-19), and postoperative period, among others, were included. The interfaces cited in the studies included an oronasal mask, nasal mask, full-face mask, and helmet. In addition, some favorable outcomes related to NIV were reported in the studies, such as a reduction in the rate of orotracheal intubation and shorter length of stay in the ICU. Conclusions: The most cited interfaces in the treatment of ARF were the oronasal mask and the helmet.
文摘<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failure is an uncommon complication of pregnancy. However, it is the most frequent organ dysfunction associated with obstetric admissions to an intensive care unit. The obstetric population is a different group due to its physiology and the presence of the fetus that lacks evidence in the literature within the subject of ventilatory support. Noninvasive positive pressure ventilation (NIPPV) is often avoided due to the lack of knowledge on the safety and efficacy of this modality. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Currently,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> there are no guidelines for the management of respiratory failure in pregnancy. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">To provide evidence in support of the use of NIPPV as a safe and reasonable modality for pregnant patients with respiratory failure. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">We retrospectively reviewed medical records of 29 pregnant patients of the Obstetric Critical Care Unit of a tertiary hospital in Panamá City who received NIPPV from 2013 to 2015. Failure to response was defined as the lack of increase in the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio or clinical deterioration 6 hours after initiating NIPPV. Demographics, indication for NIPPV, duration of treatment, as well as maternal and fetal outcomes were collected. </span><b><span style="font-family:Verdana;">Measurements</span></b> <b><span style="font-family:Verdana;">and</span></b> <b><span style="font-family:Verdana;">Main</span></b> <b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Mean age was 28.4 ± 6 years, mean body mass index 27.4 ± 3.3, and mean gestational age at admission was 30</span><sup><span style="font-family:Verdana;">5/7</span></sup><span style="font-family:Verdana;"> ± 5 weeks. Twenty-four patients (82.8%) met the criteria for acute lung injury (ALI) and an additional two (6.9%) for acute respiratory distress syndrome (ARDS). The mean duration of ventilation was 50.6 ± 17.27 hours. Statistically significant differences were noted between the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratios in failure and successful patients within 2 hours of NIPPV therapy (P = 0.007) and </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio within 6 hours of NIPPV therapy (P = 0.03). Success was defined when the patient was administered NIPPV, resulting in an improvement (increase in </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">p</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">a/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio) of her ventilatory parameters. Three patients (10.3%) failed to respond to NIPPV and needed to be converted to invasive mechanical ventilation. Patients who required intubation had a longer duration of ICU stay (P = 0.006) and overall hospital stay (P = 0.03). None of patients presented aspiration during NIPPV therapy. </span><b><span style="font-family:Verdana;">Conclusion: </span></b><span style="font-family:Verdana;">The current series is the largest report of pregnant patients requiring ventilatory support who received NIPPV as first line of therapy. This report shows the usefulness of this ventilation modality, avoiding intubation with its risks, of a significant number of patients, especially ventilator-associated pneumonia.</span></span></span></span>
文摘Objective:To evaluate the efficacy and safety of protective lung ventilation strategy combined with lung recruitment maneuver (RM) in the treatment patients with acute respiratory distress syndrome (ARDS).Methods:Totally 74 patients with ARDS admitted to the Department of Intensive Care Unit, Changshu Second People's Hospital in Jiangsu Province between September 2010 and June 2013 were selected and randomly divided into lung recruitment group and non-lung recruitment group, and the initial ventilation solution for both groups was synchronized intermittent mandatory ventilation (SIMV). For RM, SIMV mode (pressure control and pressure support) was adopted. Positive end expiratory pressure (PEEP) was increased by 5 cm H2O every time and maintained for 40-50 s before entering the next increasing period, and the peak airway pressure was kept below 45 cm H2O. After PEEP reached the maximum value, it was gradually reduced by 5 cm H2O every time and finally maintained at 15 cm H2O for 10 min.Results:A total of 74 patients with mean age of (49.0±18.6) years old were enrolled, 36 patients were enrolled in lung recruitment maneuver (RM) group and 38 patients were enrolled into non-lung recruitment maneuver (non-RM) group. 44 were male and accounted for 59.5% of all the patients. For the indicators such as PEEP, pressure support (PS), plateau airway pressure (Pplat), peak airway pressure (Ppeak), vital capacity (VC) and fraction of inspired oxygen (FiO2), no statistical differences in the indicators were found between the RM group and non-RM group on D1, D3 and D7 (P>0.05), except that only FiO2 of RM group on D7 was significantly lower than that of non-RM group (47.2±10.0) vs. (52.2±10.5),P<0.05]. For the indicators of blood gas analysis, including pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2) and oxygenation index (PaO2/FiO2), PaO2 and PaO2/FiO2 of RM group were significantly higher than those of non-RM group on D7, and the values were [(90.2±16.1) mmHg vs. (76.4±11.3) mmHg,P<0.05] and [(196.5±40.7) mmHg vs. (151.7±37.3) mmHg,P<0.05] respectively. There was no statistical difference in heart rate (HR), cardiac index (CI), central venous pressure (CVP) or mean arterial pressure (MAP) between RM group and non-RM group on D1, D3 and D7 (P>0.05). 28-day mortality, ICU mortality and in-hospital mortality were 25% vs. 28.9%, 25% vs. 26.3% and 36.1% vs. 39.5% respectively between RM group and non-RM group (allP>0.05).Conclusion:Protective lung ventilation strategy combined with lung recruitment maneuver can improve the indicators such as PaO2, FiO2 and PaO2/FiO2 on D7, but failed to improve the final outcomes such as 28-day mortality, ICU mortality and in-hospital mortality.
基金supported by NIH National Center for Advancing Translational Science,No.UL1TR001881
文摘AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric intensive care unit(PICU) or inpatient general pediatrics between January 2013 and December 2015 at two academic centers.Patients who utilized NIMV with other modes of noninvasive ventilation during the same admission were included.Data included demographics,vital signs on admission and prior to initiation of NIMV,pediatric risk of mortality Ⅲ(PRIsM-Ⅲ) scores,complications,respiratory support characteristics,PICU and hospital length of stays,duration of respiratory support,and complications.Patients who did not require escalation to mechanical ventilation were defined as NIMV responders;those who required escalation to mechanical ventilation(MV) were defined as NIMV nonresponders.NIMV responders were compared to NIMV non-responders.RESULTS Forty-two patients met study criteria.six(14%) failed treatment and required MV.The majority of the patients(74%) had a primary diagnosis of bronchiolitis.The median age of these 42 patients was 4 mo(range 0.5-28.1 mo,IQR 7,P = 0.69).No significant difference was measured in other baseline demographics and vitals on initiation of NIMV;these included age,temperature,respiratory rate,O2 saturation,heart rate,systolic blood pressure,diastolic blood pressure,and PRIsM-Ⅲ scores.The duration of NIMV was shorter in the NIMV nonresponder vs NIMV responder group(6.5 h vs 65 h,P < 0.0005).Otherwise,NIMV failure was not associated with significant differences in PICU length of stay(LOs),hospital LOs,or total duration of respiratory support.No patients had aspiration pneumonia,pneumothorax,or skin breakdown.CONCLUSION Most of our patients responded to NIMV.NIMV failure is not associated with differences in hospital LOs,PICU LOs,or duration of respiratory support.
文摘<b>Objective:</b> The purpose of this study was to investigate the effect of right supine endotracheal intubation on respiratory complications and airway pressure of general anesthesia, and to provide guidance for clinical application. <b>Methods:</b> Seventy-two children who received oral treatment under general anesthesia from November 2020 to November 2021 in Yantai Stomatological Hospital were randomly divided into three groups, 24 cases in each group. All three groups of children entered the PACU after the surgery. The children in Group I were extubated in the supine position, the children in Group II were immediately changed to the right decubitus after extubation in the horizontal position, and the children in Group III were extubated in the right decubitus. HR, MAP and SpO<sub>2</sub> of T1 (the time point at the beginning of surgery), T2 (the time point at 1 hour after surgery), T3 (the time point after extubation), T4 (the time point at 1 minute after extubation), T5 (the time point at 3 minutes after extubation) in the three groups were observed, t1 (operation time) and t2 (the time of leaving the PACU) were recorded. The airway pressure (P1) in the recumbent position and the airway pressure (P2) in the right decubitus position before extubation were recorded in Group III. The number of sputum suction and complications after extubation were counted. <b>Results:</b> The t2 in Group III was shorter than that in Groups I and II, and the number of sputum suction in Group III was less than that in Groups I and II (P < 0.05). The HR at T3, T4 and T5 in Group III was lower than that in Group I, and the HR at T4 and T5 was lower than that in Group II (P < 0.05). There were significant differences in the incidence of respiratory complications among the three groups (P < 0.05). The incidence of asphyxia, bucking and glossocoma postoperative agitation in Group III was significantly lower than that in Group I, and the incidence of asphyxia and choking was lower than that in Group II (P < 0.05). The incidence of glossoptosis in Group II was significantly lower than that in Group I (P < 0.05). In Group III, the airway pressure P2 in the right decubitus position during endotracheal intubation was higher than that of P1 in the supine position during endotracheal intubation (P < 0.05). The 95% Confidence Interval (CI) of airway pressure difference was 1.416 - 1.834 cmH<sub>2</sub>O. <b>Conclusion:</b> For children undergoing intraoral therapy under general anesthesia, tracheal extubation in the right decubitus position can improve the circulation fluctuation before and after extubation, reducing the number of sputum suction and respiratory tract-related complications, and can shorten the departure time. The body position change during the tracheal intubation will slightly increase the airway pressure, but the supine position after extubation can better ensure the smooth spontaneous breathing of children, which can provide the reference for clinical application.
文摘The novel coronavirus,which was declared a pandemic by the World Health Organization in early 2020 has brought with itself major morbidity and mortality.It has increased hospital occupancy,heralded economic turmoil,and the rapid transmission and community spread have added to the burden of the virus.Most of the patients are admitted to the intensive care unit(ICU)for acute hypoxic respiratory failure often secondary to acute respiratory distress syndrome(ARDS).Based on the limited data available,there have been different opinions about the respiratory mechanics of the ARDS caused by coronavirus disease 2019(COVID-19).Our article provides an insight into COVID-19 pathophysiology and how it differs from typical ARDS.Based on these differences,our article explains the different approach to ventilation in COVID-19 ARDS compared to typical ARDS.We critically analyze the role of positive end-expiratory pressure(PEEP)and proning in the ICU patients.Through the limited data and clinical experience are available,we believe that early proning in COVID-19 patients improves oxygenation and optimal PEEP should be titrated based on individual lung compliance.
文摘Objective:To explore the respiratory medicine treatment methods for treating chronic obstructive pulmonary disease(COPD)combined with respiratory failure.Methods:70 cases of COPD patients with combined respiratory failure admitted to our hospital from January 2021 to January 2023 were selected as the study subjects,and randomly divided into the control group and the experimental group,each with 35 cases.The control group received only conventional treatment,and the experimental group received non-invasive positive pressure ventilation,and the treatment effects and changes in the levels of IL-18,hs-CRP,and CES2 inflammatory factors were observed and evaluated in the two groups.Results:There was no significant difference between the general data of the two groups(P>0.05);after treatment,the total effective rate of clinical efficacy of the observation group(91.43%)was significantly higher than that of the control group(71.43%),and the difference showed a significant correlation(P<0.05);after treatment,the level of inflammatory factor of the observation group was significantly reduced compared with that of the control group,and the difference showed a highly significant correlation(P<0.001).Conclusion:The non-invasive positive pressure ventilation treatment program significantly improves the therapeutic effect,effectively controls the level of inflammatory factors,and improves the health status of patients when dealing with patients with chronic obstructive pulmonary disease accompanied by respiratory failure,showing a good clinical application prospect.
文摘Background Although noninvasive positive pressure ventilation (NPPV) has been successfully used for various kinds of acute respiratory failure,the data are limited regarding its application in postoperative respiratory failure after cardiac surgery.Therefore,we conducted a prospective randomized control study in a university surgical intensive care unit to evaluate the efficacy and safety of NPPV in the treatment of acute respiratory failure after cardiac surgery,and explore the predicting factors of NPPV failure.Methods From September 2011 to November 2012 patients with acute respiratory failure after cardiac surgery who had indication for the use of NPPV were randomly divided into a NPPV treatment group (NPPV group) and the conventional treatment group (control group).The between-group differences in the patients' baseline characteristics,re-intubation rate,tracheotomy rate,ventilator associated pneumonia (VAP) incidence,in-hospital mortality,mechanical ventilation time after enrollment (MV time),intensive care unit (ICU) and postoperative hospital stays were compared.The factors that predict NPPV failure were analyzed.Results During the study period,a total of 139 patients who had acute respiratory failure after cardiac surgery were recorded,and 95 of them met the inclusion criteria,which included 59 males and 36 females with a mean age of (61.5±11.2) years.Forty-three patients underwent coronary artery bypass grafting (CABG),23 underwent valve surgery,13 underwent CABG+valve surgery,13 underwent major vascular surgery,and three underwent other surgeries.The NPPV group had 48 patients and the control group had 47 patients.In the NPPV group,the re-intubation rate was 18.8%,tracheotomy rate was 12.5%,VAP incidence was 0,and the in-hospital mortality was 18.8%,significantly lower than in the control group 80.9%,29.8%,17.0% and 38.3% respectively,P <0.05 or P <0.01.The MV time and ICU stay (expressed as the median (P25,P75)) were 18.0 (9.2,35.0) hours and 4.0 (2.0,5.0) days,which were significantly shorter than in the control group,96.0 (26.0,240.0) hours and 6.0 (4.0,9.0) days respectively,P <0.05 or P <0.01.The postoperative hospital stays of the two groups were similar.The univariate analysis showed that the NPPV success subgroup had more patients with acute lung injury (ALl) (17 vs.0,P=0.038),fewer patients with pneumonia (2 vs.7,P <0.001) and lower acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) scores (16.1±2.8 vs.21.8±3.2,P <0.001).Multivariate analysis showed that pneumonia (P=-0.027) and a high APACHE Ⅱ score >20 (P=-0.002) were the independent risk factors of NPPV failure.Conclusions We conclude that NPPV can be applied in selected patients with acute respiratory failure after cardiac surgery to reduce the need of re-intubation and improve clinical outcome as compared with conventional treatment.Pneumonia and a high APACHE Ⅱ score >20 might be the independent risk factors of NPPV failure in this group of patients.
文摘Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients(BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilatorinduced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.
文摘<strong>Background:</strong> Prone positioning is nowadays considered as one of the most effective strategies for patients with severe acute respiratory distress syndrome (ARDS). Prone position ventilation can lead to some severe complications. Effectively implement prone ventilation and reduce the incidence of complications become an important problem for clinical medical staff. <strong>Aims: </strong>To investigate whether the Sandwich rolling over method was convenient for clinical implementation and can reduce complications. <strong>Design:</strong> This is a single-center, retrospective, observational study.<strong> Results:</strong> The mean pronation cycles per patient were 6.11 <span style="white-space:nowrap;">±</span> 4.40. The mean time spent in prone position for each cycle was 10.05 <span style="white-space:nowrap;">±</span> 4.42 hours. Two patients developed a pressure sore and the positions were cheek, auricle and chest. The mean time it took from preparation to cover the patient with the quilt was 10.56 <span style="white-space:nowrap;">±</span> 4.35 minutes. Conclusions: This retrospective study has shown that under the close cooperation and supervision of the team, the implementation efficiency of prone position ventilation can be improved and the occurrence of complications can be reduced.