Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,p...Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.展开更多
针对室外大范围场景移动机器人建图中,激光雷达里程计位姿计算不准确导致SLAM(simultaneous localization and mapping)算法精度下降的问题,提出一种基于多传感信息融合的SLAM语义词袋优化算法MSW-SLAM(multi-sensor information fusion...针对室外大范围场景移动机器人建图中,激光雷达里程计位姿计算不准确导致SLAM(simultaneous localization and mapping)算法精度下降的问题,提出一种基于多传感信息融合的SLAM语义词袋优化算法MSW-SLAM(multi-sensor information fusion SLAM based on semantic word bags)。采用视觉惯性系统引入激光雷达原始观测数据,并通过滑动窗口实现了IMU(inertia measurement unit)量测、视觉特征和激光点云特征的多源数据联合非线性优化;最后算法利用视觉与激光雷达的语义词袋互补特性进行闭环优化,进一步提升了多传感器融合SLAM系统的全局定位和建图精度。实验结果显示,相比于传统的紧耦合双目视觉惯性里程计和激光雷达里程计定位,MSW-SLAM算法能够有效探测轨迹中的闭环信息,并实现高精度的全局位姿图优化,闭环检测后的点云地图具有良好的分辨率和全局一致性。展开更多
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.3418].
文摘Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.
文摘针对室外大范围场景移动机器人建图中,激光雷达里程计位姿计算不准确导致SLAM(simultaneous localization and mapping)算法精度下降的问题,提出一种基于多传感信息融合的SLAM语义词袋优化算法MSW-SLAM(multi-sensor information fusion SLAM based on semantic word bags)。采用视觉惯性系统引入激光雷达原始观测数据,并通过滑动窗口实现了IMU(inertia measurement unit)量测、视觉特征和激光点云特征的多源数据联合非线性优化;最后算法利用视觉与激光雷达的语义词袋互补特性进行闭环优化,进一步提升了多传感器融合SLAM系统的全局定位和建图精度。实验结果显示,相比于传统的紧耦合双目视觉惯性里程计和激光雷达里程计定位,MSW-SLAM算法能够有效探测轨迹中的闭环信息,并实现高精度的全局位姿图优化,闭环检测后的点云地图具有良好的分辨率和全局一致性。