A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi...A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poi...Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poisson’s equation.Without additional care for a stricter CFL condition or special treatment to the negative source term,popular methods used in streamer discharge simulations,e.g.,FEMFCT,FVM,cannot ensure the positivity of the particle densities for the cases in attaching gases.By introducing the positivity-preserving limiter proposed by Zhang and Shu[15]and Strang operator splitting,this paper proposes a finite difference scheme with a provable positivity-preserving property in cylindrical coordinate system,for the numerical simulation of streamer discharges in non-attaching and attaching gases.Numerical examples in non-attaching gas(N_(2))and attaching gas(SF_(6))are given to illustrate the effectiveness of the scheme.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,...In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,the mass conservation,mole balance and energy conservation are kept simultaneously while the positivity for the density and pressure is preserved unconditionally even with stiff reaction networks.It is proved that the first-order truncation terms for the Patankar coefficients must be zero to achieve a prior third order of accuracy for most cases.A twostage Patankar procedure for each Runge-Kutta step is designed to eliminate the first-order truncation terms,accomplish the prior third order of accuracy and maximize the Courant number which the total variational diminishing property requires.With the same approach as the second-order schemes,the third-order ones are applied to Euler equations with chemical reactive source terms.Numerical studies including both 1D and 2D ordinary and partial differential equations are conducted to affirm both the prior order of accuracy and the positivity-preserving property for the density and pressure.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interface...A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interfaces and volume integrated average(VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2(conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function(CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1 D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
The rapid development of the global economy has led to the over-exploitation and burning of fossil fuels,causing a severe energy crisis and continuous CO_(2) emissions.Although solar energy is a clean and renewable re...The rapid development of the global economy has led to the over-exploitation and burning of fossil fuels,causing a severe energy crisis and continuous CO_(2) emissions.Although solar energy is a clean and renewable resource,it faces significant diurnal and seasonal variations and is difficult to store[1-4].Converting solar energy into storable chemical energy through photocatalysis is an effective way to address both energy scarcity and environmental issues.Photocatalytic CO_(2) reduction,with the development of high-efficiency photocatalysts as the key,offers a clean and environmentally friendly method to convert CO_(2) into valuable hydrocarbon fuels,providing a viable solution to the global energy crisis and climate change[5,6].展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the m...In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.展开更多
Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector ...Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc...In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.展开更多
Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been ...Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.展开更多
In this paper,we propose a second-order moving-water equilibria preserving nonstaggered central scheme to solve the Ripa model via flux globalization.To maintain the moving-water steady states,we use the discrete sour...In this paper,we propose a second-order moving-water equilibria preserving nonstaggered central scheme to solve the Ripa model via flux globalization.To maintain the moving-water steady states,we use the discrete source terms proposed by Britton et al.(J Sci Comput,2020,82(2):Art 30)by incorporating the expression of the source terms as a whole into the flux gradient,which directly avoids the discrete complexity of the source terms in order to maintain the well-balanced properties of the scheme.In addition,since the nonstaggered central scheme requires re-projecting the updated values of the nonstaggered cells onto the staggered cells,we modify the calculation of the global variables by constructing ghost cells and alternating the values of the global variables with the water depths obtained from the solution through the nonlinear relationship between the global flux and the water depth.In order to maintain the second-order accuracy of the scheme on the time scale,we incorporate a new Runge-Kutta type time discretization in the evolution of the numerical solution for the nonstaggered cells.Meanwhile,we introduce the"draining"time step technique to ensure that the water depth is positive and that it satisfies mass conservation.Numerical experiments verify that the scheme is well-balanced,positivity-preserving and robust.展开更多
In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured L...In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.展开更多
文摘A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金supported by National Basic Research Program of China(973 program)under grant 2011CB209403National Natural Science Foundation of China under grant 51207078China Postdoctoral Science Foundation under grant 2012M520274.
文摘Assumed having axial symmetry,the streamer discharge is often described by a fluid model in cylindrical coordinate system,which consists of convection dominated(diffusion)equations with source terms,coupled with a Poisson’s equation.Without additional care for a stricter CFL condition or special treatment to the negative source term,popular methods used in streamer discharge simulations,e.g.,FEMFCT,FVM,cannot ensure the positivity of the particle densities for the cases in attaching gases.By introducing the positivity-preserving limiter proposed by Zhang and Shu[15]and Strang operator splitting,this paper proposes a finite difference scheme with a provable positivity-preserving property in cylindrical coordinate system,for the numerical simulation of streamer discharges in non-attaching and attaching gases.Numerical examples in non-attaching gas(N_(2))and attaching gas(SF_(6))are given to illustrate the effectiveness of the scheme.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金This work was supported by the National Natural Science Foundation of China(No.12102211)the Science and Technology Innovation 2025 Major Project of Ningbo,China(No.2022Z213).
文摘In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,the mass conservation,mole balance and energy conservation are kept simultaneously while the positivity for the density and pressure is preserved unconditionally even with stiff reaction networks.It is proved that the first-order truncation terms for the Patankar coefficients must be zero to achieve a prior third order of accuracy for most cases.A twostage Patankar procedure for each Runge-Kutta step is designed to eliminate the first-order truncation terms,accomplish the prior third order of accuracy and maximize the Courant number which the total variational diminishing property requires.With the same approach as the second-order schemes,the third-order ones are applied to Euler equations with chemical reactive source terms.Numerical studies including both 1D and 2D ordinary and partial differential equations are conducted to affirm both the prior order of accuracy and the positivity-preserving property for the density and pressure.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金supported by the National Key Research and Development Program of China (Grant Nos.2017YFC1501901 and 2017YFA0603901)the Beijing Natural Science Foundation (Grant No.JQ18001)。
文摘A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interfaces and volume integrated average(VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2(conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function(CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1 D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
文摘The rapid development of the global economy has led to the over-exploitation and burning of fossil fuels,causing a severe energy crisis and continuous CO_(2) emissions.Although solar energy is a clean and renewable resource,it faces significant diurnal and seasonal variations and is difficult to store[1-4].Converting solar energy into storable chemical energy through photocatalysis is an effective way to address both energy scarcity and environmental issues.Photocatalytic CO_(2) reduction,with the development of high-efficiency photocatalysts as the key,offers a clean and environmentally friendly method to convert CO_(2) into valuable hydrocarbon fuels,providing a viable solution to the global energy crisis and climate change[5,6].
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
文摘In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.
基金Supported by National Key R&D Program of China (Grant No.2023YFB3407103)National Natural Science Foundation of China (Grant Nos.52175242,52175027)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金supported by the National Natural Science Foundation of China(Grant No.12301590)the Natural Science Foundation of Hebei Province(Grant No.A2022210002)。
文摘In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
基金The project is provided funding by the Natural Science Foundation of China(Nos.62272124,2022YFB2701400)the Science and Technology Program of Guizhou Province(No.[2020]5017)+3 种基金the Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,GZUAMT2021KF[01]the Postgraduate Innovation Program in Guizhou Province(No.YJSKYJJ[2021]028).
文摘Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.
基金supported by the National Natural Science Foundation of China(51879194)。
文摘In this paper,we propose a second-order moving-water equilibria preserving nonstaggered central scheme to solve the Ripa model via flux globalization.To maintain the moving-water steady states,we use the discrete source terms proposed by Britton et al.(J Sci Comput,2020,82(2):Art 30)by incorporating the expression of the source terms as a whole into the flux gradient,which directly avoids the discrete complexity of the source terms in order to maintain the well-balanced properties of the scheme.In addition,since the nonstaggered central scheme requires re-projecting the updated values of the nonstaggered cells onto the staggered cells,we modify the calculation of the global variables by constructing ghost cells and alternating the values of the global variables with the water depths obtained from the solution through the nonlinear relationship between the global flux and the water depth.In order to maintain the second-order accuracy of the scheme on the time scale,we incorporate a new Runge-Kutta type time discretization in the evolution of the numerical solution for the nonstaggered cells.Meanwhile,we introduce the"draining"time step technique to ensure that the water depth is positive and that it satisfies mass conservation.Numerical experiments verify that the scheme is well-balanced,positivity-preserving and robust.
文摘In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes.