After corrosion failure of post-tensioned tendons was identified in a Florida bridge in early 2011, laboratory tests were conducted in this study on extracted sections from the failed tendons to identify the grout pro...After corrosion failure of post-tensioned tendons was identified in a Florida bridge in early 2011, laboratory tests were conducted in this study on extracted sections from the failed tendons to identify the grout properties and makeup leading to the failure and also to elucidate the mechanism of corrosion. The initial steps in identification of PT tendons with a high propensity for corrosion initiation or damaged included a detailed visual inspection and identification of voids in the grout. Voids in tendon can be a result of bleed water formation or construction problems. General characteristics of the deficient grout and corrosion behavior of steel in the affected bridge gave a first approach to assessing grout deficiency and corrosion susceptibility. However, refinements in the understanding of the mechanisms causing grout segregation and the elucidation of the role of sulfates, oxygen content, and pore water pH in corrosion development are required.展开更多
High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and...High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and safety standards. Despite the advances that have been made in rock mechanics and rock engineering during the last 80 years in which post-tensioned anchors have been used in dam en- gineering, some aspects of the rock engineering design of high-capacity rock anchors for dams have changed relatively little over the last 30 or 40 years. This applies, in particular, to the calculations usually carried out to establish the grouted embedment lengths required for deep, post-tensioned anchors. These calculations usually make simplified assumptions about the distribution and values of rock-grout interface shear strengths, the shape of the volume of rock likely to be involved in uplift failure under the influence of a system of post-tensioned anchors, and the mechanism of that failure. The resulting designs are generally conservative. It is concluded that these aspects of the rock engineering design of large, post- tensioned rock anchors for dams can be significantly improved by making greater use of modern, comprehensive, numerical analyses in conjunction with three-dimensional (3D) models of the rock mass structure, realistic rock and rock mass properties, and the results of prototype anchor tests in the rock mass concerned.展开更多
A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel...A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.展开更多
High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and...High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and safety standards. Despite the advances that have been made in rock mechanics and rock engineering during the last 80 years in which post-tensioned anchors have been used in dam engineering, some aspects of the rock engineering design of high-capacity rock anchors for dams have changed relatively little over the last 30 or 40 years. This applies, in particular, to the calculations usually carried out to establish the grouted embedment lengths required for deep, post-tensioned anchors.These calculations usually make simpli fi ed assumptions about the distribution and values of rock e grout interface shear strengths, the shape of the volume of rock likely to be involved in uplift failure under the in fl uence of a system of post-tensioned anchors, and the mechanism of that failure. The resulting designs are generally conservative. It is concluded that these aspects of the rock engineering design of large, posttensioned rock anchors for dams can be significantly improved by making greater use of modern,comprehensive, numerical analyses in conjunction with three-dimensional(3D) models of the rock mass structure, realistic rock and rock mass properties, and the results of prototype anchor tests in the rock mass concerned.展开更多
文摘After corrosion failure of post-tensioned tendons was identified in a Florida bridge in early 2011, laboratory tests were conducted in this study on extracted sections from the failed tendons to identify the grout properties and makeup leading to the failure and also to elucidate the mechanism of corrosion. The initial steps in identification of PT tendons with a high propensity for corrosion initiation or damaged included a detailed visual inspection and identification of voids in the grout. Voids in tendon can be a result of bleed water formation or construction problems. General characteristics of the deficient grout and corrosion behavior of steel in the affected bridge gave a first approach to assessing grout deficiency and corrosion susceptibility. However, refinements in the understanding of the mechanisms causing grout segregation and the elucidation of the role of sulfates, oxygen content, and pore water pH in corrosion development are required.
文摘High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and safety standards. Despite the advances that have been made in rock mechanics and rock engineering during the last 80 years in which post-tensioned anchors have been used in dam en- gineering, some aspects of the rock engineering design of high-capacity rock anchors for dams have changed relatively little over the last 30 or 40 years. This applies, in particular, to the calculations usually carried out to establish the grouted embedment lengths required for deep, post-tensioned anchors. These calculations usually make simplified assumptions about the distribution and values of rock-grout interface shear strengths, the shape of the volume of rock likely to be involved in uplift failure under the influence of a system of post-tensioned anchors, and the mechanism of that failure. The resulting designs are generally conservative. It is concluded that these aspects of the rock engineering design of large, post- tensioned rock anchors for dams can be significantly improved by making greater use of modern, comprehensive, numerical analyses in conjunction with three-dimensional (3D) models of the rock mass structure, realistic rock and rock mass properties, and the results of prototype anchor tests in the rock mass concerned.
基金National Natural Science Foundation of China under Nos.50808107,51178250 and 51261120377
文摘A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.
文摘High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and safety standards. Despite the advances that have been made in rock mechanics and rock engineering during the last 80 years in which post-tensioned anchors have been used in dam engineering, some aspects of the rock engineering design of high-capacity rock anchors for dams have changed relatively little over the last 30 or 40 years. This applies, in particular, to the calculations usually carried out to establish the grouted embedment lengths required for deep, post-tensioned anchors.These calculations usually make simpli fi ed assumptions about the distribution and values of rock e grout interface shear strengths, the shape of the volume of rock likely to be involved in uplift failure under the in fl uence of a system of post-tensioned anchors, and the mechanism of that failure. The resulting designs are generally conservative. It is concluded that these aspects of the rock engineering design of large, posttensioned rock anchors for dams can be significantly improved by making greater use of modern,comprehensive, numerical analyses in conjunction with three-dimensional(3D) models of the rock mass structure, realistic rock and rock mass properties, and the results of prototype anchor tests in the rock mass concerned.