Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega...FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.展开更多
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology ...For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology to study the effect of the matrix proportion on the mechanical properties and rupture behaviors of rock.Samples of mylonitic granite and granitic protomylonite with varying matrix proportions were obtained from a ductile shear zone for a series of uniaxial compression and acoustic emission(AE)tests.The results showed that with the increase in matrix proportion,the average strength and elastic modulus of the samples increased,and the rock sample with the largest matrix proportion exhibited the maximum peak stress of 244.42 MPa,which was 45.86%greater than the average peak stress of the rock samples with the smallest matrix proportions.For the rock samples with larger matrix proportion,their mechanical parameters exhibited greater dispersion and the large-scale appearance of AE events occurred earlier,showing a relatively gradual failure process.These samples had larger accumulated AE parameter values and greater degree of failure.In contrast,for samples with smaller matrix proportions,the large-scale appearance of AE events occurred close to the peak stress,indicating that the occurrence of damage and fractures was centralized and instantaneous.These samples had lower accumulated AE parameter values and fewer cracks after failure.Additionally,for the rock samples with more matrix proportion,the average variance of the b-value was 1.1,which was lower than that of rock samples with the smallest matrix proportion(the average variance of the b-value was 3.7).Furthermore,it can be predicted that under certain stress,the failure depth around a tunnel is generally smaller when the strength of rock samples with larger matrix proportion is greater.展开更多
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ...The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.展开更多
Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and r...Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock.展开更多
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static me...Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea...Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.展开更多
In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid an...In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid and semi-solid states at different strain rates. The results show that the tensile behavior can be divided into three regimes with increasing the liquid fraction. The alloy first behaves in a ductile character, and as the temperature increases, the fracture mechanism changes from ductile to brittle which is determined by both of liquid and solid, and lastly the fracture mechanism is brittle which is totally dominated by liquid. At strain rates of 1×10?4, 1×10?3 and 1×10?2 s?1, the brittle temperature ranges are 515?526, 519?550 and 540?580 °C, respectively. Two equations which are critical for tensile behavior are proposed.展开更多
The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)...The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.展开更多
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum...The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.展开更多
Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrica...Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide.展开更多
The mechanical behavior and failure mechanism of recycled semi-flexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic ...The mechanical behavior and failure mechanism of recycled semi-flexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic splitting tensile tests on mechanics testing system(MTS). The mechanical analysis in micro scale was carried out by material image analysis method and finite element analysis system. The strains of recycled semi-flexible pavement material on samples surface and in each phase materials were obtained. The test results reveal that the performance of recovered asphalt binder was the major determinant on the structural stability of recycled semi-flexible pavement material. The asphalt binder with high viscoelasticity could delay the initial cracking time and reduce the residual strain under cyclic loading conditions. The failure possibility order of each phase in recycled semi-flexible pavement material was asphalt binder, reclaimed aggregate, cement paste and virgin aggregate.展开更多
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
基金supported by the National Natural Natural Science Foundation of China(No.52271055)the Natural Science Foundation of Hebei Province,China(No.E2024202154).
文摘FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金supported by the National Natural Science Foundation of China(Grant No.52125402)the Natural Science Foundation of Sichuan Province,China(Grant No.2022NSFSC0005).
文摘For projects near the tectonic belt,mylonite of varying metamorphic degrees may be present.The matrix proportion of rock reflects its internal microscopic characteristics,thus it is beneficial for engineering geology to study the effect of the matrix proportion on the mechanical properties and rupture behaviors of rock.Samples of mylonitic granite and granitic protomylonite with varying matrix proportions were obtained from a ductile shear zone for a series of uniaxial compression and acoustic emission(AE)tests.The results showed that with the increase in matrix proportion,the average strength and elastic modulus of the samples increased,and the rock sample with the largest matrix proportion exhibited the maximum peak stress of 244.42 MPa,which was 45.86%greater than the average peak stress of the rock samples with the smallest matrix proportions.For the rock samples with larger matrix proportion,their mechanical parameters exhibited greater dispersion and the large-scale appearance of AE events occurred earlier,showing a relatively gradual failure process.These samples had larger accumulated AE parameter values and greater degree of failure.In contrast,for samples with smaller matrix proportions,the large-scale appearance of AE events occurred close to the peak stress,indicating that the occurrence of damage and fractures was centralized and instantaneous.These samples had lower accumulated AE parameter values and fewer cracks after failure.Additionally,for the rock samples with more matrix proportion,the average variance of the b-value was 1.1,which was lower than that of rock samples with the smallest matrix proportion(the average variance of the b-value was 3.7).Furthermore,it can be predicted that under certain stress,the failure depth around a tunnel is generally smaller when the strength of rock samples with larger matrix proportion is greater.
基金supported by the National Natural Science Foundation of China(Grant Nos.42171135 and 12262009)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022098).
文摘The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.
基金supported by the National Natural Science Foundation of China(Grant No.52074352)the National Natural Science Foundation of Hunan Province of China(Grant No.2023JJ30680)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2024ZZTS0423).
文摘Many rock engineering projects show that the growth of tensile cracks is often an important cause of engineering disasters,and the mechanical behavior of rocks is essentially the transmission,storage,dissipation and release of energy.To investigate the tensile behavior of rock from the perspective of energy,uniaxial tension tests(UTTs)and uniaxial compression tests(UCTs)were carried out on three typical rocks(granite,sandstone and marble).Different unloading points were set before the peak stress to separate elastic energy and dissipated energy.The input energy density ut,elastic energy density ue,and dissipated energy density ud at each unloading point were calculated by integrating stress-strain curves.The results show that there is a strong linear relationship between the three energy parameters and the square of the unloading stress in UCT,but this linear relationship is weaker in UTT.The ue and ud increase linearly with the increase in ut in UCT and UTT.Based on the phenomenon that ue and ud increase linearly with ut,the applicability of W_(et)^(p) index in UTT was proved and the relative energy storage capacity and absolute energy distribution characteristics of three rocks in UCT and UTT were evaluated.The tensile behavior of marble and sandstone in UTT can be divided into two stages vaguely according to the energy distribution,but granite is not the case.In addition,based on dissipated energy,the damage evolution of three types of rocks in UCT and UTT was discussed.This study provides some new insights for understanding the tensile behavior of rock.
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金the project supported by the National Natural Science Foundation of China(Grant No.52372425)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project)(Grant No.2022JBXT010).
文摘Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金supported by the Introducing Talents Funds of Nanjing Institute of Technology,ChinaProject(20100470030) supported by the China Postdoctoral Science Foundation
文摘Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.
基金Project(51405100)supported by the National Natural Science Foundation of ChinaProject(2014M551233)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2014-HT-HGD12)supported by the Astronautical Supporting Technology Foundation of ChinaProject(2015GGX102023)supported by the Plan of Science and Technology Development in Shandong Province,China
文摘In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid and semi-solid states at different strain rates. The results show that the tensile behavior can be divided into three regimes with increasing the liquid fraction. The alloy first behaves in a ductile character, and as the temperature increases, the fracture mechanism changes from ductile to brittle which is determined by both of liquid and solid, and lastly the fracture mechanism is brittle which is totally dominated by liquid. At strain rates of 1×10?4, 1×10?3 and 1×10?2 s?1, the brittle temperature ranges are 515?526, 519?550 and 540?580 °C, respectively. Two equations which are critical for tensile behavior are proposed.
基金Projects (2010CB731700,2012CB619500) supported by the National Basic Research Program of China
文摘The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.
基金Project(51271203)supported by the National Natural Science Foundation of Chinathe PPP project between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)+2 种基金Project(11JJ2025)supported by Hunan Provincial Natural Science Foundation of ChinaProject(YSZN2013CL06)supported by the Nonferrous Metals Science Foundation of HNG-CSUProject supported by the Aid program for Science Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.
文摘Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide.
文摘The mechanical behavior and failure mechanism of recycled semi-flexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic splitting tensile tests on mechanics testing system(MTS). The mechanical analysis in micro scale was carried out by material image analysis method and finite element analysis system. The strains of recycled semi-flexible pavement material on samples surface and in each phase materials were obtained. The test results reveal that the performance of recovered asphalt binder was the major determinant on the structural stability of recycled semi-flexible pavement material. The asphalt binder with high viscoelasticity could delay the initial cracking time and reduce the residual strain under cyclic loading conditions. The failure possibility order of each phase in recycled semi-flexible pavement material was asphalt binder, reclaimed aggregate, cement paste and virgin aggregate.