期刊文献+
共找到1,084篇文章
< 1 2 55 >
每页显示 20 50 100
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
1
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 concrete dam Buttress dam SLIDING Shear strength concrete-rock interface Asperity inclination Asperity location
下载PDF
The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures 被引量:1
2
作者 Bozabe Renonet Karka Bassa Bruno +1 位作者 Nadjitonon Ngarmaïm Alladjo Rimbarngaye 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期1-21,共21页
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s... Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion. 展开更多
关键词 Reinforced concrete Construction Steel-concrete interface Corrosion Degradation Rate ADHESION Bearing Capacity
下载PDF
Micro-structure and Macro-performance:Surface Layer Evolution of Concrete under Long-term Exposure in Harsh Plateau Climate
3
作者 CHEN Xin CUI Anqi +4 位作者 ZHENG Haitao YANG Wencui HUANG Xin GE Yong LI Lihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1496-1506,共11页
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr... We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions. 展开更多
关键词 concrete pore structure interface transition zone mechanical property chloride ion impenetrability PLATEAU
下载PDF
Mode-I fracture and durability of FRP-concrete bonded interfaces 被引量:5
4
作者 Qiao Pizhong Xu Yingwu 《Water Science and Engineering》 EI CAS 2008年第4期47-60,共14页
In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability... In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces. 展开更多
关键词 repair and strengthening of concrete structures FRP composites FRP-concrete bonded interface mode-l fracture DURABILITY FREEZE-THAW wet-dry interface energy
下载PDF
Viscoelastic micromechanical model for dynamic modulus prediction of asphalt concrete with interface effects 被引量:3
5
作者 董满生 高仰明 +2 位作者 李凌林 王利娜 孙志彬 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期926-933,共8页
A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoe... A viscoelastic micromechanical model is presented to predict the dynamic modulus of asphalt concrete (AC) and investigate the effect of imperfect interface between asphalt mastic and aggregates on the overall viscoelastic characteristics of AC. The linear spring layer model is introduced to simulate the interface imperfection. Based on the effective medium theory, the viscoelastic micromechanical model is developed by two equivalence processes. The present prediction is compared with available experimental data to verify the developed framework. It is found that the proposed model has the capability to predict the dynamic modulus of AC. Interface effect on the dynamic modulus of AC is discussed using the developed model. It is shown that the interfacial bonding strength has a significant influence on the global mechanical performance of AC, and that continued improvement in surface fimctionalization is necessary to realize the full potential of aggregates reinforcement. 展开更多
关键词 asphalt concrete imperfect interface rheological properties MICROMECHANICS
下载PDF
Physicochemical Study on the Interface Zone of Concrete Exposed to Different Sulfate Solutions 被引量:2
6
作者 刘赞群 邓德华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期167-174,共8页
This paper reports the results of the visual observations and micro-analysis of concrete core samples after 6 and 12 months of their exposure to sodium, ammonium and magnesium sulfate solutions with the same concentra... This paper reports the results of the visual observations and micro-analysis of concrete core samples after 6 and 12 months of their exposure to sodium, ammonium and magnesium sulfate solutions with the same concentration of sulfate ions. XRD, SEM and EDS were used for micro-analysis of the mi-crostructure and the composition of the interface zone in the samples. The results indicate that the deterioration of concrete by different sulfate solutions could proceed differently with regard to the mechanism and the mode of damage caused. The damage of concrete exposed to sodium sulfate solution is mainly caused by the gypsum crystals formed in the interface zone, which lead to expansion and cracking. In the case of concrete immersed in magnesium sulfate solutions, a layer of brucite (magnesium hydroxide) and gypsum was produced in the interface zone, which reduces the cohesiveness of the interface zone in concrete. For the concrete immersed in ammonium sulfate solutions, the conversation of mortar to some mush mass by ammonium ions and the formation of a large of gypsum occurred in the interface zone, consequently, serious softening of hydrated cement pastes and expansion and cracking of concrete are the characteristics of the attack by ammonium sulfate solutions. Also, it is considered that using drilled concrete core as samples to evaluate the sulfate resistance of concrete is a good and accelerated method. 展开更多
关键词 concrete interface zone sulfate attack sodium sulfate magnesium sulfate ammonium sulfate
下载PDF
Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment 被引量:4
7
作者 LI Yao YIN Shi-ping LV Heng-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期876-890,共15页
Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining th... Textile-reinforced concrete(TRC)is suitable to repair and reinforce concrete structures in harsh environments.The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC.In this paper,a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete,also considering the existing concrete strength,bond length,textile layer and short-cut fiber arrangements.In addition,X-ray diffraction(XRD)technology was used to analyze the microscopic matter at the interface in the corrosive environment.The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles.Compared with the specimen with a single layer of textile reinforcement,the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete.For the TRC with a single layer of textile,the average shear strength tended to decrease with increasing bond length.In addition,the strength grade of the existing concrete had a minor effect on the interface properties. 展开更多
关键词 textile-reinforced concrete chloride dry-wet cycles double-sided shear average shear strength interface slip X-ray diffraction technology
下载PDF
Influence of construction interfaces on dynamic characteristics of roller compacted concrete dams 被引量:3
8
作者 GU Chong-shi WANG Shao-wei BAO Teng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1521-1535,共15页
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art... To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured. 展开更多
关键词 roller compacted concrete dam construction interface nonlinear fracture radiation damping viscous-spring artificial boundary dynamic response
下载PDF
A study on dynamic shear strength on frozen soil-concrete interface 被引量:5
9
作者 Peng Lv JianKun Liu YingHui Cui 《Research in Cold and Arid Regions》 CSCD 2013年第4期408-412,共5页
Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil... Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil sample in the upper part, a series of dynamic shear tests on their interfaces were carried out. The obtained results are summarized and the main influencing factors are revealed. 展开更多
关键词 frozen soil-concrete interface dynamic direct shear dynamic shear slrength
下载PDF
Finite Element Analysis of Shrinkage in the Interface of Functionally Graded Concrete Segment Used in Shield Tunneling
10
作者 高英力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第z1期94-98,共5页
In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element... In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of 'Equivalent Temperature Difference'. Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer. The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate. 展开更多
关键词 shield segment functionally graded concrete SHRINKAGE finite element analysis interface
下载PDF
Interactions between Superplasticizer and Release Agents at the Concrete/Formwork Interface
11
作者 Samir Bouharoun Yannick Vanhove +2 位作者 Chafika Djelal Pascale De Caro Isabelle Dubois 《Materials Sciences and Applications》 2012年第6期384-389,共6页
Improving the knowledge of rheological and tribological characteristics of fresh concrete is important to contribute to the progress of construction sites and the final quality of the work. The objective of this study... Improving the knowledge of rheological and tribological characteristics of fresh concrete is important to contribute to the progress of construction sites and the final quality of the work. The objective of this study is to identify the effect of a superplasticizer based on polycarboxylic ether on the tribological behavior of fresh concrete at the concrete/formwork and concrete/oil/formwork interfaces. Friction tests on fresh concrete were carried out using a plan/plan tribometer. In order to study the behavior of the superplasticizer close to the formwork, three concretes with 30% of paste and different dosage of superplasticizer were formulated. The results show that the increase of the dosage of superplasticizer reduces the friction stress. The properties of the superplasticizer generate a deflocculating action of concrete grains and lead to a stabilisation of the soap-oil micellae present in the vicinity of the formwork. Thus, the efficiency of superplasticizer depends on the quantity of fines, on the quantity of soap formed and so, on the release agent formulation. 展开更多
关键词 TRIBOLOGY concrete/Formwork interface concrete/Oil/Formwork interface SUPERPLASTICIZER Release Agent PHYSICOCHEMICAL
下载PDF
Freeze-Thaw Effect on Coarse Sand Coated Interface between FRP and Concrete
12
作者 Keunhee Cho Sung Yong Park +2 位作者 Sung Tae Kim Jeong-Rae Cho Byung-Suk Kim 《Engineering(科研)》 2013年第10期807-815,共9页
This paper examines the effect of freezing and thawing on the coarse sand coating chosen to achieve the composition of FRP and concrete in FRP-concrete composite deck. Push-out test specimens with dimensions of 100 &#... This paper examines the effect of freezing and thawing on the coarse sand coating chosen to achieve the composition of FRP and concrete in FRP-concrete composite deck. Push-out test specimens with dimensions of 100 × 100 × 450 mm were subjected to repeated freeze-thaw cycles under wet conditions ranging from -18℃± 2℃ to 4℃ ± 2℃. The failure strength of the interface and the deformation of FRP at failure exhibited by the specimens that experienced 300 freezing-thawing cycles showed a difference of merely 5% compared to those of the specimens that were not subjected to freeze-thaw. This indicates that coarse sand coating is not affected by freezing-thawing cycles and the FRP-concrete composite deck owns sufficient applicability in terms of durability against freezing-thawing. 展开更多
关键词 FREEZE-THAW Coarse SAND Coating interface Failure FRP concrete
下载PDF
Investigation on Fracture Behavior of FRP-Concrete Interface under Direct Shear
13
作者 Fengchen An Shuangyin Cao Jinlong Pan Qian Ge 《Journal of Civil Engineering and Architecture》 2010年第3期20-25,共6页
In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearin... In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP. 展开更多
关键词 FRP-concrete interface direct shear fracture behaviour friction stress concrete substrate
下载PDF
Study on Interface mechanical behavior of steel tube reinforced concrete composite pile
14
作者 ZHAO Jiehao 《International English Education Research》 2016年第4期93-94,共2页
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob... Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle. 展开更多
关键词 Steel tube reinforced concrete composite pile interface mechanical properties research methods
下载PDF
Microstructure Model of the Interfacial Zone Between Fresh and Old Concrete 被引量:6
15
作者 谢慧才 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期64-68,共5页
A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the m... A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the microstructure of interface between fresh and old (3 months to 60 years) concretes by using scanning electron microscopy.Then,the mechanism of the microstructure formed was analyzed.Finally,the relationship between the micro-structure and macro-mechanical performance of the interface was discussed. 展开更多
关键词 microstructure of the interface bonding model repairing of concrete
下载PDF
The shear strength of the interface between artificial rock and printed concrete at super-early ages
16
作者 Yong Yuan Xiaoyun Wang +4 位作者 Jiao-Long Zhang Yaxin Tao Kim Van Tittelboom Luc Taerwe Geert De Schutter 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第1期51-65,共15页
3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ... 3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples. 展开更多
关键词 rock tunnel printed concrete interface fast bond shear test shear strength
原文传递
Meso-mechanical Interfacial Behavior of Elbow Steel Fiber Reinforced Concrete
17
作者 赵燕茹 邢永明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期986-993,共8页
The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image co... The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber. 展开更多
关键词 elbow fiber reinforced concrete digital image correlation debonding of the interface strain localization
下载PDF
Study of interfacial transition zones between magnesium phosphate cement and Portland cement concrete pavement
18
作者 Fei Liu Baofeng Pan +3 位作者 Changjun Zhou Ge Li Xiaocun Wang Jiaquan Li 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第3期523-537,共15页
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t... The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results. 展开更多
关键词 Portland cement concrete pavement interfacial transition zone Magnesium phosphate cement Repair interface NANOINDENTATION Mechanical properties and characteristics
原文传递
STUDY ON COUPLING MODEL OF (SEEPAGE-FIELD) AND STRESS-FIELD FOR ROLLED CONTROL CONCRETE DAM 被引量:6
19
作者 顾冲时 苏怀智 周红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第3期355-363,共9页
Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters.... Based on the construction interfaces in rolled control concrete dam(RCCD), the methods were proposed to calculate the influence thickness of construction interfaces and the corresponding physical mechanics parameters. The principle on establishing the coupling model of seepage_field and stress_field for RCCD was presented. A 3_D Finite Element Method(FEM) program was developed. Study shows that such parameters as the thickness of construction interfaces,the elastic ratio and the (Poisson's) ratio obtained by tests and theoretical analysis are more reasonable, the coupling model of seepage_field and stress_field for RCCD may indicate the coupling effect between the two fields scientifically, and the developed 3_D FEM program can reflect the effect of the construction interfaces more adequately. According to the study, many scientific opinions are given both to analyze the influence of the construction interfaces to the (dam's) characteristic, and to reveal the interaction between the stress_field and the seepage_field. 展开更多
关键词 rolled control concrete dam (RCCD) interface seepage-field stress-field coupling analysis
下载PDF
A sophisticated simulation for the fracture behavior of concrete material using XFEM 被引量:3
20
作者 Zhai Changhai Wang Xiaomin +2 位作者 Kong Jingchang Li Shuang Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期859-881,共23页
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequ... The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence ofmode-Ⅱ parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters. 展开更多
关键词 fracture behavior concrete material earthquake engineering interface constitutive model XFEM
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部