The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentia...The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance.展开更多
A series of mesoporous smectite like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synt...A series of mesoporous smectite like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure.展开更多
A computer monitoring thermogravimetric system was used to study the effect of alkali chlorides(MCl, M=Li, Na, K and Cs) on the carbothermic reduction of pre oxidized ilmenite in the course of a linear rise in tempera...A computer monitoring thermogravimetric system was used to study the effect of alkali chlorides(MCl, M=Li, Na, K and Cs) on the carbothermic reduction of pre oxidized ilmenite in the course of a linear rise in temperature from 600 ℃ to 1 000 ℃. The experimental results indicate that all the alkali chlorides can speed up the reduction process of pre oxidized ilmenite, moreover, KCl is the most effective catalyst of the chlorides, while the catalytic effects of LiCl and CsCl are relatively weaker. It seems that the catalytic mechanism of LiCl is different from those of the other alkali chlorides. The cross sectional morphology of the partially reduced pre oxidized ilmenite particles and the distribution of potassium ions within them were examined by means of scanning electronic microscopy and electronic probe microanalysis, respectively, which shows that the reduction proceeds topochemically and the alkali ion enriches at the periphery of the particles.[展开更多
The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal tre...The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal treatment on mixed plastic waste using the mixture of polypropylene, polystyrene, polyethylene and polyvinyl chloride (PVC) has been performed to observe the dechlorination effect of hydrothermal treatment on the waste. The system was generally applying saturated steam at around 2.4 MPa in a stirring reactor for about 90 minutes. After undergoing the process, the organic chlorine in treated plastic waste was reduced to 1,700 ppm level while the inorganic chlorine content was increased, suggesting an organic chlorine conversion phenomenon to inorganic chlorine, accompanied with low pH due to dehydrochlorination process. Additional limestone (Ca(OH)2) in subsequent experiment showed that the similar phenomenon was occurred but with higher pH and lower chlorine content in the condensed water, suggesting the production of inorganic salt rather than hydrochloric acid. Laboratory scale experiment was also performed to confirm the dechlorination phenomena especially for PVC, and the result showed that the main parameter which affected the dechlorination phenomena was the amount of water in hydrothermal process rather than limestone addition. It is suggested that a combination ofhydrothermal process and alkali addition would produce a low-chlorine solid product from plastic waste, promoting its usage as alternative solid fuel.展开更多
基金financial support from Natural Science Foundation of Inner Mongolia(No.2019MS05068)Inner Mongolia scientific and technological achievements transformation project(CGZH2018132)+3 种基金Inner Mongolia major science and technology project(2020ZD0024)the research project of Inner Mongolia Electric Power(Group)Co.,Ltd for post-doctoral studies,the Hong Kong Polytechnic University start-up funding,National Nature Science Foundation of China(No.51872157)Shenzhen Key Laboratory on Power Battery Safety Research(No.ZDSYS201707271615073)financial support from the Australian Research Council(DE190100445).
文摘The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance.
文摘A series of mesoporous smectite like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure.
基金Project supported by the National Natural Science Foundation of China
文摘A computer monitoring thermogravimetric system was used to study the effect of alkali chlorides(MCl, M=Li, Na, K and Cs) on the carbothermic reduction of pre oxidized ilmenite in the course of a linear rise in temperature from 600 ℃ to 1 000 ℃. The experimental results indicate that all the alkali chlorides can speed up the reduction process of pre oxidized ilmenite, moreover, KCl is the most effective catalyst of the chlorides, while the catalytic effects of LiCl and CsCl are relatively weaker. It seems that the catalytic mechanism of LiCl is different from those of the other alkali chlorides. The cross sectional morphology of the partially reduced pre oxidized ilmenite particles and the distribution of potassium ions within them were examined by means of scanning electronic microscopy and electronic probe microanalysis, respectively, which shows that the reduction proceeds topochemically and the alkali ion enriches at the periphery of the particles.[
文摘The usage of plastic-impregnated waste derived solid fuel in conventional combustor is hindered by many technical factors, especially its organic chlorine content. In this paper, experimental study of hydrothermal treatment on mixed plastic waste using the mixture of polypropylene, polystyrene, polyethylene and polyvinyl chloride (PVC) has been performed to observe the dechlorination effect of hydrothermal treatment on the waste. The system was generally applying saturated steam at around 2.4 MPa in a stirring reactor for about 90 minutes. After undergoing the process, the organic chlorine in treated plastic waste was reduced to 1,700 ppm level while the inorganic chlorine content was increased, suggesting an organic chlorine conversion phenomenon to inorganic chlorine, accompanied with low pH due to dehydrochlorination process. Additional limestone (Ca(OH)2) in subsequent experiment showed that the similar phenomenon was occurred but with higher pH and lower chlorine content in the condensed water, suggesting the production of inorganic salt rather than hydrochloric acid. Laboratory scale experiment was also performed to confirm the dechlorination phenomena especially for PVC, and the result showed that the main parameter which affected the dechlorination phenomena was the amount of water in hydrothermal process rather than limestone addition. It is suggested that a combination ofhydrothermal process and alkali addition would produce a low-chlorine solid product from plastic waste, promoting its usage as alternative solid fuel.